transformers/examples/summarization/evaluate_cnn.py

101 lines
3.6 KiB
Python

import argparse
from pathlib import Path
import torch
from rouge_score import rouge_scorer, scoring
from tqdm import tqdm
from transformers import AutoModelWithLMHead, AutoTokenizer
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def generate_summaries(
examples: list, out_file: str, model_name: str, batch_size: int = 8, device: str = DEFAULT_DEVICE
):
fout = Path(out_file).open("w", encoding="utf-8")
model = AutoModelWithLMHead.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# update config with summarization specific params
task_specific_params = model.config.task_specific_params
if task_specific_params is not None:
model.config.update(task_specific_params.get("summarization", {}))
for batch in tqdm(list(chunks(examples, batch_size))):
if "t5" in model_name:
batch = [model.config.prefix + text for text in batch]
dct = tokenizer.batch_encode_plus(batch, max_length=1024, return_tensors="pt", pad_to_max_length=True).to(
device
)
summaries = model.generate(**dct)
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
def calculate_rouge(output_lns, reference_lns, score_path):
score_file = Path(score_path).open("w")
scorer = rouge_scorer.RougeScorer(["rouge1", "rouge2", "rougeL"], use_stemmer=True)
aggregator = scoring.BootstrapAggregator()
for reference_ln, output_ln in zip(reference_lns, output_lns):
scores = scorer.score(reference_ln, output_ln)
aggregator.add_scores(scores)
result = aggregator.aggregate()
score_file.write(
"ROUGE_1: \n{} \n\n ROUGE_2: \n{} \n\n ROUGE_L: \n{} \n\n".format(
result["rouge1"], result["rouge2"], result["rougeL"]
)
)
def run_generate():
parser = argparse.ArgumentParser()
parser.add_argument(
"input_path", type=str, help="like cnn_dm/test.source or cnn_dm/test_articles_input.txt",
)
parser.add_argument(
"output_path", type=str, help="where to save summaries",
)
parser.add_argument(
"model_name",
type=str,
default="facebook/bart-large-cnn",
help="like bart-large-cnn,'t5-small', 't5-base', 't5-large', 't5-3b', 't5-11b",
)
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt")
parser.add_argument(
"--score_path", type=str, required=False, help="where to save the rouge score",
)
parser.add_argument(
"--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.",
)
parser.add_argument(
"--bs", type=int, default=8, required=False, help="batch size: how many to summarize at a time",
)
args = parser.parse_args()
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()]
generate_summaries(examples, args.output_path, args.model_name, batch_size=args.bs, device=args.device)
if args.score_path is not None:
output_lns = [x.rstrip() for x in open(args.output_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()]
calculate_rouge(output_lns, reference_lns, args.score_path)
if __name__ == "__main__":
run_generate()