transformers/examples/seq2seq/test_finetune_trainer.py

121 lines
4.2 KiB
Python

import os
import sys
from pathlib import Path
from unittest.mock import patch
import pytest
from transformers import is_torch_available
from transformers.testing_utils import TestCasePlus, slow
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
from .finetune_trainer import main
from .test_seq2seq_examples import MBART_TINY
from .utils import execute_async_std
if is_torch_available():
import torch
set_seed(42)
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"
class TestFinetuneTrainer(TestCasePlus):
def test_finetune_trainer(self):
output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
assert "eval_bleu" in first_step_stats
@slow
def test_finetune_trainer_slow(self):
# There is a missing call to __init__process_group somewhere
output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
# Check metrics
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
first_step_stats = eval_metrics[0]
last_step_stats = eval_metrics[-1]
assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"] # model learned nothing
assert isinstance(last_step_stats["eval_bleu"], float)
# test if do_predict saves generations and metrics
contents = os.listdir(output_dir)
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.json" in contents
def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
# XXX: remove hardcoded path
data_dir = "examples/seq2seq/test_data/wmt_en_ro"
output_dir = self.get_auto_remove_tmp_dir()
argv = f"""
--model_name_or_path {model_name}
--data_dir {data_dir}
--output_dir {output_dir}
--overwrite_output_dir
--n_train 8
--n_val 8
--max_source_length {max_len}
--max_target_length {max_len}
--val_max_target_length {max_len}
--do_train
--do_eval
--do_predict
--num_train_epochs {str(num_train_epochs)}
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--learning_rate 3e-4
--warmup_steps 8
--evaluate_during_training
--predict_with_generate
--logging_steps 0
--save_steps {str(eval_steps)}
--eval_steps {str(eval_steps)}
--sortish_sampler
--label_smoothing 0.1
--adafactor
--task translation
--tgt_lang ro_RO
--src_lang en_XX
""".split()
# --eval_beams 2
n_gpu = torch.cuda.device_count()
if n_gpu > 1:
path = Path(__file__).resolve()
cur_path = path.parents[0]
path = Path(__file__).resolve()
examples_path = path.parents[1]
src_path = f"{path.parents[2]}/src"
env = os.environ.copy()
env["PYTHONPATH"] = f"{examples_path}:{src_path}:{env.get('PYTHONPATH', '')}"
distributed_args = (
f"-m torch.distributed.launch --nproc_per_node={n_gpu} {cur_path}/finetune_trainer.py".split()
)
cmd = [sys.executable] + distributed_args + argv
print("\nRunning: ", " ".join(cmd))
result = execute_async_std(cmd, env=env, stdin=None, timeout=180, quiet=False, echo=False)
assert result.stdout, "produced no output"
if result.returncode > 0:
pytest.fail(f"failed with returncode {result.returncode}")
else:
# 0 or 1 gpu
testargs = ["finetune_trainer.py"] + argv
with patch.object(sys, "argv", testargs):
main()
return output_dir