mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* fix a bunch of XPU UT failures on stock PyTorch 2.7 and 2.8 Signed-off-by: YAO Matrix <matrix.yao@intel.com> * qwen3 Signed-off-by: YAO Matrix <matrix.yao@intel.com> * quanto Signed-off-by: YAO Matrix <matrix.yao@intel.com> * models Signed-off-by: YAO Matrix <matrix.yao@intel.com> * fix style Signed-off-by: YAO Matrix <matrix.yao@intel.com> * idefics2 Signed-off-by: YAO Matrix <matrix.yao@intel.com> --------- Signed-off-by: YAO Matrix <matrix.yao@intel.com>
703 lines
32 KiB
Python
703 lines
32 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Idefics2 model."""
|
|
|
|
import copy
|
|
import tempfile
|
|
import unittest
|
|
from io import BytesIO
|
|
|
|
import pytest
|
|
import requests
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
Idefics2Config,
|
|
Idefics2ForConditionalGeneration,
|
|
Idefics2Model,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_multi_accelerator,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class Idefics2VisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
is_training=True,
|
|
batch_size=2,
|
|
num_images=2,
|
|
seq_length=10,
|
|
vision_config={
|
|
"image_size": 12,
|
|
"patch_size": 12,
|
|
"num_channels": 3,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 32,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
perceiver_config={
|
|
"hidden_act": "silu",
|
|
"resampler_n_latents": 2,
|
|
"resampler_depth": 2,
|
|
"resampler_n_heads": 2,
|
|
"num_key_value_heads": 1,
|
|
"resampler_head_dim": 12,
|
|
"attention_dropout": 0.0,
|
|
},
|
|
text_config={
|
|
"vocab_size": 100,
|
|
"hidden_size": 64,
|
|
"intermediate_size": 56,
|
|
"num_hidden_layers": 3,
|
|
"num_attention_heads": 2,
|
|
"num_key_value_heads": 2,
|
|
"hidden_act": "silu",
|
|
"max_position_embeddings": 256,
|
|
"initializer_range": 0.02,
|
|
"rms_norm_eps": 1e-6,
|
|
"pad_token_id": 0, # None in the original configuration_mistral, we set it to the unk_token_id
|
|
"bos_token_id": 1,
|
|
"eos_token_id": 2,
|
|
"image_token_id": 99,
|
|
"tie_word_embeddings": False,
|
|
"rope_theta": 10000.0,
|
|
"sliding_window": 32,
|
|
"attention_dropout": 0.0,
|
|
},
|
|
use_cache=False,
|
|
tie_word_embeddings=False,
|
|
image_token_id=99,
|
|
):
|
|
self.parent = parent
|
|
self.is_training = is_training
|
|
self.batch_size = batch_size
|
|
self.num_images = num_images
|
|
self.num_channels = 3
|
|
self.seq_length = seq_length
|
|
self.use_cache = use_cache
|
|
self.image_token_id = image_token_id
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
# Hack - add properties here so use common tests
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
|
|
self.vision_config = vision_config
|
|
self.perceiver_config = perceiver_config
|
|
self.text_config = text_config
|
|
|
|
def get_config(self):
|
|
return Idefics2Config(
|
|
use_cache=self.use_cache,
|
|
image_token_id=self.image_token_id,
|
|
tie_word_embeddings=self.tie_word_embeddings,
|
|
vision_config=self.vision_config,
|
|
perceiver_config=self.perceiver_config,
|
|
text_config=self.text_config,
|
|
vocab_size=self.vocab_size,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_images,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 1
|
|
|
|
# For simplicity just set the last n tokens to the image token
|
|
n_image_tokens_per_batch = self.num_images * self.perceiver_config["resampler_n_latents"]
|
|
input_ids[:, -n_image_tokens_per_batch:] = self.image_token_id
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Idefics2ModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `Idefics2`.
|
|
"""
|
|
|
|
all_model_classes = (Idefics2Model,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_torchscript = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Idefics2VisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=Idefics2Config, has_text_modality=False, common_properties=["image_token_id"]
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="input_embeds cannot be passed in without input_ids")
|
|
def test_inputs_embeds():
|
|
pass
|
|
|
|
@unittest.skip(reason="input_embeds cannot be passed in without input_ids")
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Model does not support padding right")
|
|
def test_flash_attn_2_generate_padding_right(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Model does not support padding right")
|
|
def test_flash_attn_2_inference_padding_right(self):
|
|
pass
|
|
|
|
# We need to override as we need to prepare such that the image token is the last token
|
|
def test_resize_tokens_embeddings(self):
|
|
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
model_vocab_size = config.text_config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# Ignore copy
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2)
|
|
n_images = self.model_tester.num_images * self.model_tester.perceiver_config["resampler_n_latents"]
|
|
model.image_token_id = model_vocab_size - 15 - 1
|
|
inputs_dict["input_ids"][:, -n_images:] = model.image_token_id
|
|
|
|
# make sure that decoder_input_ids are resized as well
|
|
if "decoder_input_ids" in inputs_dict:
|
|
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_vocab_size = config.text_config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
|
|
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
|
|
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
|
|
target_dimension = 128
|
|
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0], target_dimension)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
|
|
):
|
|
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
|
|
|
|
# We need to override as we need to prepare such that the image token is the last token
|
|
def test_resize_embeddings_untied(self):
|
|
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
original_config.tie_word_embeddings = False
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config).to(torch_device)
|
|
|
|
# if no output embeddings -> leave test
|
|
if model.get_output_embeddings() is None:
|
|
continue
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_vocab_size = config.text_config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2)
|
|
n_images = self.model_tester.num_images * self.model_tester.perceiver_config["resampler_n_latents"]
|
|
model.image_token_id = model_vocab_size - 15 - 1
|
|
inputs_dict["input_ids"][:, -n_images:] = model.image_token_id
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model_sdpa.vision_model.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model_sdpa.connector.perceiver_resampler.config._attn_implementation == "sdpa")
|
|
|
|
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.connector.perceiver_resampler.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
|
|
@require_torch
|
|
class Idefics2ForConditionalGenerationModelTest(GenerationTesterMixin, ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `Idefics2ForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (Idefics2ForConditionalGeneration,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-text-to-text": Idefics2ForConditionalGeneration} if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Idefics2VisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Idefics2Config, has_text_modality=False)
|
|
|
|
@unittest.skip(reason="input_embeds cannot be passed in without input_ids")
|
|
def test_inputs_embeds():
|
|
pass
|
|
|
|
@unittest.skip(reason="Model does not support padding right")
|
|
def test_flash_attn_2_generate_padding_right(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Model does not support padding right")
|
|
def test_flash_attn_2_inference_padding_right(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Contrastive search is not implemented for VLMs that do cross-attn")
|
|
def test_contrastive_generate(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Contrastive search is not implemented for VLMs that do cross-attn")
|
|
def test_contrastive_generate_dict_outputs_use_cache(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Contrastive search is not implemented for VLMs that do cross-attn")
|
|
def test_contrastive_generate_low_memory(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="Prompt lookup decoding needs a way to indicate `bad_word_ids` that should not be suggested as candidates"
|
|
)
|
|
def test_prompt_lookup_decoding_matches_greedy_search(self):
|
|
pass
|
|
|
|
@pytest.mark.generate
|
|
@require_torch_sdpa
|
|
@slow
|
|
@unittest.skip(
|
|
reason="Idefics2 doesn't support SDPA for all backbones, vision backbones has only eager/FA2 attention"
|
|
)
|
|
def test_eager_matches_sdpa_generate(self):
|
|
pass
|
|
|
|
# We need to override as we need to prepare such that the image token is the last token
|
|
def test_resize_tokens_embeddings(self):
|
|
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_vocab_size = config.text_config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = model_embed.weight.clone()
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2)
|
|
n_images = self.model_tester.num_images * self.model_tester.perceiver_config["resampler_n_latents"]
|
|
model.model.image_token_id = model_vocab_size - 15 - 1
|
|
inputs_dict["input_ids"][:, -n_images:] = model.model.image_token_id
|
|
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
model_vocab_size = config.text_config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
|
|
self.assertTrue(model.config.text_config.vocab_size + 10, model_vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
self.assertTrue(model_embed.weight.shape[0], model.config.text_config.vocab_size)
|
|
self.assertTrue(model.config.text_config.vocab_size, model.vocab_size)
|
|
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
|
|
|
|
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
|
|
target_dimension = 128
|
|
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
|
|
self.assertTrue(model_embed.weight.shape[0], target_dimension)
|
|
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
|
|
):
|
|
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
|
|
|
|
# We need to override as we need to prepare such that the image token is the last token
|
|
def test_resize_embeddings_untied(self):
|
|
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
original_config.tie_word_embeddings = False
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config).to(torch_device)
|
|
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_vocab_size = config.text_config.vocab_size
|
|
model.resize_token_embeddings(model_vocab_size + 10)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size + 10)
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model.resize_token_embeddings(model_vocab_size - 15)
|
|
self.assertEqual(model.config.text_config.vocab_size, model_vocab_size - 15)
|
|
# Check that it actually resizes the embeddings matrix
|
|
output_embeds = model.get_output_embeddings()
|
|
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
|
|
# Check bias if present
|
|
if output_embeds.bias is not None:
|
|
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary - 1 and the image token should be the last token
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 2)
|
|
n_images = self.model_tester.num_images * self.model_tester.perceiver_config["resampler_n_latents"]
|
|
model.model.image_token_id = model_vocab_size - 15 - 1
|
|
inputs_dict["input_ids"][:, -n_images:] = model.model.image_token_id
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
def test_inputs_embeds_matches_input_ids_with_generate(self):
|
|
# overwrite because IDEFICS needs ids and embeds at the input to be not None
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
|
|
pad_token_id = config.pad_token_id if config.pad_token_id is not None else 1
|
|
|
|
wte = model.get_input_embeddings()
|
|
|
|
input_ids = inputs["input_ids"]
|
|
# some models infer position ids/attn mask differently when input ids
|
|
# by check if pad_token let's make sure no padding is in input ids
|
|
not_pad_token_id = pad_token_id + 1 if max(0, pad_token_id - 1) == 0 else pad_token_id - 1
|
|
input_ids[input_ids == pad_token_id] = not_pad_token_id
|
|
del inputs["input_ids"]
|
|
inputs_embeds = wte(input_ids)
|
|
out_ids = model.generate(input_ids=input_ids, **inputs, max_new_tokens=2)
|
|
out_embeds = model.generate(input_ids=input_ids, inputs_embeds=inputs_embeds, **inputs, max_new_tokens=2)
|
|
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
|
|
@require_torch
|
|
class Idefics2ForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-base")
|
|
self.image1 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
|
|
).content
|
|
)
|
|
)
|
|
self.image2 = Image.open(
|
|
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
|
|
)
|
|
self.image3 = Image.open(
|
|
BytesIO(
|
|
requests.get(
|
|
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
|
|
).content
|
|
)
|
|
)
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_torch_multi_accelerator
|
|
def test_integration_test(self):
|
|
model = Idefics2ForConditionalGeneration.from_pretrained(
|
|
"HuggingFaceM4/idefics2-8b-base",
|
|
torch_dtype=torch.bfloat16,
|
|
device_map="auto",
|
|
)
|
|
|
|
# Create inputs
|
|
text = "<image>In this image, we see"
|
|
images = self.image1
|
|
inputs = self.processor(text=text, images=images, return_tensors="pt", padding=True)
|
|
inputs.to(torch_device)
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=10)
|
|
generated_texts = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
# Batch affects generated text. Single batch output: ['In this image, we see the Statue of Liberty in the foreground and']
|
|
expected_generated_text = "In this image, we see the Statue of Liberty, the New York City"
|
|
self.assertEqual(generated_texts[0], expected_generated_text)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_integration_test_4bit(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model = Idefics2ForConditionalGeneration.from_pretrained(
|
|
"HuggingFaceM4/idefics2-8b-base",
|
|
load_in_4bit=True,
|
|
)
|
|
|
|
# Create pixel inputs
|
|
text = ["<image>In this image, we see", "bla, bla <image><image>"]
|
|
images = [[self.image1], [self.image2, self.image3]]
|
|
inputs = self.processor(text=text, images=images, padding=True, return_tensors="pt").to(torch_device)
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=10)
|
|
generated_texts = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
expected_generated_texts = Expectations(
|
|
{
|
|
("xpu", 3): "In this image, we see the Statue of Liberty, the Hudson River,",
|
|
("cuda", None): "In this image, we see the Statue of Liberty, the Hudson River,",
|
|
("rocm", (9, 5)): "In this image, we see the Statue of Liberty, the New York City",
|
|
}
|
|
)
|
|
EXPECTED_GENERATED_TEXT = expected_generated_texts.get_expectation()
|
|
self.assertEqual(generated_texts[0], EXPECTED_GENERATED_TEXT)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_integration_test_4bit_batch2(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
|
|
model = Idefics2ForConditionalGeneration.from_pretrained(
|
|
"HuggingFaceM4/idefics2-8b-base",
|
|
load_in_4bit=True,
|
|
)
|
|
|
|
from datasets import load_dataset
|
|
|
|
dataset = load_dataset("nielsr/docvqa_1200_examples", split="test")
|
|
|
|
text = [f"<image>{dataset[40]['query']['en']}", f"<image>{dataset[41]['query']['en']}"]
|
|
images = [[dataset[40]["image"]], [dataset[41]["image"]]]
|
|
inputs = self.processor(text=text, images=images, padding=True, return_tensors="pt").to(torch_device)
|
|
generated_ids = model.generate(**inputs, max_new_tokens=64)
|
|
batched_generated_texts = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
text = f"<image>{dataset[40]['query']['en']}"
|
|
images = dataset[40]["image"]
|
|
inputs = self.processor(text=text, images=images, padding=True, return_tensors="pt").to(torch_device)
|
|
generated_ids = model.generate(**inputs, max_new_tokens=64)
|
|
generated_text_0 = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
text = f"<image>{dataset[41]['query']['en']}"
|
|
images = dataset[41]["image"]
|
|
inputs = self.processor(text=text, images=images, padding=True, return_tensors="pt").to(torch_device)
|
|
generated_ids = model.generate(**inputs, max_new_tokens=64)
|
|
generated_text_1 = self.processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
self.assertEqual(batched_generated_texts[0], generated_text_0[0])
|
|
self.assertEqual(batched_generated_texts[1], generated_text_1[0])
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@require_bitsandbytes
|
|
def test_flash_attn_2_eager_equivalence(self):
|
|
# Create inputs
|
|
text = "<image>In this image, we see"
|
|
images = self.image1
|
|
inputs = self.processor(text=text, images=images, return_tensors="pt", padding=True)
|
|
inputs.to(torch_device)
|
|
|
|
# Eager model
|
|
model_eager = Idefics2ForConditionalGeneration.from_pretrained(
|
|
"HuggingFaceM4/idefics2-8b-base",
|
|
attn_implementation="eager",
|
|
load_in_4bit=True,
|
|
)
|
|
generated_ids_eager = model_eager.generate(**inputs, max_new_tokens=10)
|
|
generated_texts_eager = self.processor.batch_decode(generated_ids_eager, skip_special_tokens=True)
|
|
|
|
del model_eager
|
|
|
|
# Flash Attention 2 model
|
|
model_flash_attention_2 = Idefics2ForConditionalGeneration.from_pretrained(
|
|
"HuggingFaceM4/idefics2-8b-base",
|
|
attn_implementation="flash_attention_2",
|
|
load_in_4bit=True,
|
|
)
|
|
generated_ids_flash_attention_2 = model_flash_attention_2.generate(**inputs, max_new_tokens=10)
|
|
generated_texts_flash_attention_2 = self.processor.batch_decode(
|
|
generated_ids_flash_attention_2, skip_special_tokens=True
|
|
)
|
|
|
|
self.assertEqual(generated_texts_eager[0], generated_texts_flash_attention_2[0])
|