transformers/tests/pipelines/test_pipelines_text_generation.py
Joao Gante 9c500015c5
🚨🚨🚨 [pipelines] update defaults in pipelines that can generate (#38129)
* pipeline generation defaults

* add max_new_tokens=20 in test pipelines

* pop all kwargs that are used to parameterize generation config

* add class attr that tell us whether a pipeline calls generate

* tmp commit

* pt text gen pipeline tests passing

* remove failing tf tests

* fix text gen pipeline mixin test corner case

* update text_to_audio pipeline tests

* trigger tests

* a few more tests

* skips

* some more audio tests

* not slow

* broken

* lower severity of generation mode errors

* fix all asr pipeline tests

* nit

* skip

* image to text pipeline tests

* text2test pipeline

* last pipelines

* fix flaky

* PR comments

* handle generate attrs more carefully in models that cant generate

* same as above
2025-05-19 18:02:06 +01:00

543 lines
20 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_torch,
require_torch_accelerator,
require_torch_or_tf,
torch_device,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class TextGenerationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def test_small_model_pt(self):
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-random-LlamaForCausalLM",
framework="pt",
max_new_tokens=10,
)
# Using `do_sample=False` to force deterministic output
outputs = text_generator("This is a test", do_sample=False)
self.assertEqual(outputs, [{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}])
outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
self.assertEqual(
outputs,
[
[{"generated_text": "This is a testкт MéxicoWSAnimImportдели pip letscosatur"}],
[{"generated_text": "This is a second testкт MéxicoWSAnimImportдели Düsseld bootstrap learn user"}],
],
)
outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
self.assertEqual(
outputs,
[
{"generated_token_ids": ANY(list)},
{"generated_token_ids": ANY(list)},
],
)
@require_torch
def test_small_chat_model_pt(self):
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
chat2 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a second test"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
expected_chat1 = chat1 + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
self.assertEqual(
outputs,
[
{"generated_text": expected_chat1},
],
)
outputs = text_generator([chat1, chat2], do_sample=False, max_new_tokens=10)
expected_chat2 = chat2 + [
{
"role": "assistant",
"content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
}
]
self.assertEqual(
outputs,
[
[{"generated_text": expected_chat1}],
[{"generated_text": expected_chat2}],
],
)
@require_torch
def test_small_chat_model_continue_final_message(self):
# Here we check that passing a chat that ends in an assistant message is handled correctly
# by continuing the final message rather than starting a new one
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
{"role": "assistant", "content": "This is"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10)
# Assert that we continued the last message and there isn't a sneaky <|im_end|>
self.assertEqual(
outputs,
[
{
"generated_text": [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
{
"role": "assistant",
"content": "This is stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
},
]
}
],
)
@require_torch
def test_small_chat_model_continue_final_message_override(self):
# Here we check that passing a chat that ends in an assistant message is handled correctly
# by continuing the final message rather than starting a new one
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
outputs = text_generator(chat1, do_sample=False, max_new_tokens=10, continue_final_message=True)
# Assert that we continued the last message and there isn't a sneaky <|im_end|>
self.assertEqual(
outputs,
[
{
"generated_text": [
{"role": "system", "content": "This is a system message."},
{
"role": "user",
"content": "This is a test stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
},
]
}
],
)
@require_torch
def test_small_chat_model_with_dataset_pt(self):
from torch.utils.data import Dataset
from transformers.pipelines.pt_utils import KeyDataset
class MyDataset(Dataset):
data = [
[
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
],
]
def __len__(self):
return 1
def __getitem__(self, i):
return {"text": self.data[i]}
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
dataset = MyDataset()
key_dataset = KeyDataset(dataset, "text")
for outputs in text_generator(key_dataset, do_sample=False, max_new_tokens=10):
expected_chat = dataset.data[0] + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
self.assertEqual(
outputs,
[
{"generated_text": expected_chat},
],
)
@require_torch
def test_small_chat_model_with_iterator_pt(self):
from transformers.pipelines.pt_utils import PipelineIterator
text_generator = pipeline(
task="text-generation",
model="hf-internal-testing/tiny-gpt2-with-chatml-template",
framework="pt",
)
# Using `do_sample=False` to force deterministic output
chat1 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a test"},
]
chat2 = [
{"role": "system", "content": "This is a system message."},
{"role": "user", "content": "This is a second test"},
]
expected_chat1 = chat1 + [
{
"role": "assistant",
"content": " factors factors factors factors factors factors factors factors factors factors",
}
]
expected_chat2 = chat2 + [
{
"role": "assistant",
"content": " stairs stairs stairs stairs stairs stairs stairs stairs stairs stairs",
}
]
def data():
yield from [chat1, chat2]
outputs = text_generator(data(), do_sample=False, max_new_tokens=10)
assert isinstance(outputs, PipelineIterator)
outputs = list(outputs)
self.assertEqual(
outputs,
[
[{"generated_text": expected_chat1}],
[{"generated_text": expected_chat2}],
],
)
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
text_generator = TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
max_new_tokens=5,
)
return text_generator, ["This is a test", "Another test"]
def test_stop_sequence_stopping_criteria(self):
prompt = """Hello I believe in"""
text_generator = pipeline(
"text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5, do_sample=False
)
output = text_generator(prompt)
self.assertEqual(
output,
[{"generated_text": "Hello I believe in fe fe fe fe fe"}],
)
output = text_generator(prompt, stop_sequence=" fe")
self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])
def run_pipeline_test(self, text_generator, _):
model = text_generator.model
tokenizer = text_generator.tokenizer
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator("This is a test", return_full_text=False)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
text_generator = pipeline(
task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False, max_new_tokens=5
)
outputs = text_generator("This is a test")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertNotIn("This is a test", outputs[0]["generated_text"])
outputs = text_generator("This is a test", return_full_text=True)
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
if text_generator.tokenizer.pad_token is not None:
outputs = text_generator(
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_text=True)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_full_text=True, return_tensors=True)
with self.assertRaises(ValueError):
outputs = text_generator("test", return_text=True, return_tensors=True)
# Empty prompt is slightly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
outputs = text_generator("")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
else:
with self.assertRaises((ValueError, AssertionError)):
outputs = text_generator("", add_special_tokens=False)
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
self.skipTest(reason="TF generation does not support max_new_tokens")
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
"RwkvForCausalLM",
"XGLMForCausalLM",
"GPTNeoXForCausalLM",
"GPTNeoXJapaneseForCausalLM",
"FuyuForCausalLM",
"LlamaForCausalLM",
]
if (
tokenizer.model_max_length < 10000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
if str(text_generator.device) == "cpu":
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
text_generator("This is a test" * 500, max_new_tokens=5)
outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=5)
# Hole strategy cannot work
if str(text_generator.device) == "cpu":
with self.assertRaises(ValueError):
text_generator(
"This is a test" * 500,
handle_long_generation="hole",
max_new_tokens=tokenizer.model_max_length + 10,
)
@require_torch
@require_accelerate
@require_torch_accelerator
def test_small_model_pt_bloom_accelerate(self):
import torch
# Classic `model_kwargs`
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
max_new_tokens=5,
do_sample=False,
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device_map="auto",
torch_dtype=torch.bfloat16,
max_new_tokens=5,
do_sample=False,
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom", device_map="auto", max_new_tokens=5, do_sample=False
)
self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
out = pipe("This is a test")
self.assertEqual(
out,
[{"generated_text": ("This is a test test test test test test")}],
)
@require_torch
@require_torch_accelerator
def test_small_model_fp16(self):
import torch
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device=torch_device,
torch_dtype=torch.float16,
max_new_tokens=3,
)
pipe("This is a test")
@require_torch
@require_accelerate
@require_torch_accelerator
def test_pipeline_accelerate_top_p(self):
import torch
pipe = pipeline(
model="hf-internal-testing/tiny-random-bloom",
device_map=torch_device,
torch_dtype=torch.float16,
max_new_tokens=3,
)
pipe("This is a test", do_sample=True, top_p=0.5)
def test_pipeline_length_setting_warning(self):
prompt = """Hello world"""
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=5)
if text_generator.model.framework == "tf":
logger = logging.get_logger("transformers.generation.tf_utils")
else:
logger = logging.get_logger("transformers.generation.utils")
logger_msg = "Both `max_new_tokens`" # The beginning of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_length=10, max_new_tokens=1)
self.assertIn(logger_msg, cl.out)
# The user only sets one -> no warning
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_new_tokens=1)
self.assertNotIn(logger_msg, cl.out)
with CaptureLogger(logger) as cl:
_ = text_generator(prompt, max_length=10, max_new_tokens=None)
self.assertNotIn(logger_msg, cl.out)
def test_return_dict_in_generate(self):
text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2", max_new_tokens=2)
out = text_generator(
["This is great !", "Something else"], return_dict_in_generate=True, output_logits=True, output_scores=True
)
self.assertEqual(
out,
[
[
{
"generated_text": ANY(str),
"logits": ANY(list),
"scores": ANY(list),
},
],
[
{
"generated_text": ANY(str),
"logits": ANY(list),
"scores": ANY(list),
},
],
],
)
@require_torch
def test_pipeline_assisted_generation(self):
"""Tests that we can run assisted generation in the pipeline"""
model = "hf-internal-testing/tiny-random-MistralForCausalLM"
pipe = pipeline("text-generation", model=model, assistant_model=model, max_new_tokens=2)
# We can run the pipeline
prompt = "Hello world"
_ = pipe(prompt)
# It is running assisted generation under the hood (e.g. flags incompatible with assisted gen will crash)
with self.assertRaises(ValueError):
_ = pipe(prompt, generate_kwargs={"num_beams": 2})