mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 13:50:13 +06:00

* skip * fix * better check * Update import_utils.py --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
331 lines
12 KiB
Python
331 lines
12 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VitPose model."""
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import VitPoseBackboneConfig, VitPoseConfig
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
from transformers.utils.import_utils import get_torch_major_and_minor_version
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import VitPoseForPoseEstimation
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import VitPoseImageProcessor
|
|
|
|
|
|
class VitPoseModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=[16 * 8, 12 * 8],
|
|
patch_size=[8, 8],
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=2,
|
|
scale_factor=4,
|
|
out_indices=[-1],
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.scale_factor = scale_factor
|
|
self.out_indices = out_indices
|
|
self.scope = scope
|
|
|
|
# in VitPose, the seq length equals the number of patches
|
|
num_patches = (image_size[0] // patch_size[0]) * (image_size[1] // patch_size[1])
|
|
self.seq_length = num_patches
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return VitPoseConfig(
|
|
backbone_config=self.get_backbone_config(),
|
|
)
|
|
|
|
def get_backbone_config(self):
|
|
return VitPoseBackboneConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=self.intermediate_size,
|
|
num_attention_heads=self.num_attention_heads,
|
|
hidden_act=self.hidden_act,
|
|
out_indices=self.out_indices,
|
|
)
|
|
|
|
def create_and_check_for_pose_estimation(self, config, pixel_values, labels):
|
|
model = VitPoseForPoseEstimation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
|
|
expected_height = (self.image_size[0] // self.patch_size[0]) * self.scale_factor
|
|
expected_width = (self.image_size[1] // self.patch_size[1]) * self.scale_factor
|
|
|
|
self.parent.assertEqual(
|
|
result.heatmaps.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
pixel_values,
|
|
labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VitPoseModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as VitPose does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (VitPoseForPoseEstimation,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torch_exportable = True
|
|
test_torch_exportable_strictly = not get_torch_major_and_minor_version() == "2.7"
|
|
|
|
def setUp(self):
|
|
self.model_tester = VitPoseModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=VitPoseConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
@unittest.skip(reason="VitPose does not support input and output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support input and output embeddings")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support input and output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support training yet")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support training yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPose does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_for_pose_estimation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pose_estimation(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "usyd-community/vitpose-base-simple"
|
|
model = VitPoseForPoseEstimation.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of people in house
|
|
def prepare_img():
|
|
url = "http://images.cocodataset.org/val2017/000000000139.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class VitPoseModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return (
|
|
VitPoseImageProcessor.from_pretrained("usyd-community/vitpose-base-simple")
|
|
if is_vision_available()
|
|
else None
|
|
)
|
|
|
|
@slow
|
|
def test_inference_pose_estimation(self):
|
|
image_processor = self.default_image_processor
|
|
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=torch_device)
|
|
|
|
image = prepare_img()
|
|
boxes = [[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]]]
|
|
|
|
inputs = image_processor(images=image, boxes=boxes, return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
heatmaps = outputs.heatmaps
|
|
|
|
assert heatmaps.shape == (2, 17, 64, 48)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
]
|
|
).to(torch_device)
|
|
|
|
assert torch.allclose(heatmaps[0, 0, :3, :3], expected_slice, atol=1e-4)
|
|
|
|
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=boxes)[0]
|
|
|
|
expected_bbox = torch.tensor([391.9900, 190.0800, 391.1575, 189.3034])
|
|
expected_keypoints = torch.tensor(
|
|
[
|
|
[3.9813e02, 1.8184e02],
|
|
[3.9828e02, 1.7981e02],
|
|
[3.9596e02, 1.7948e02],
|
|
]
|
|
)
|
|
expected_scores = torch.tensor([8.7529e-01, 8.4315e-01, 9.2678e-01])
|
|
|
|
self.assertEqual(len(pose_results), 2)
|
|
torch.testing.assert_close(pose_results[1]["bbox"].cpu(), expected_bbox, rtol=1e-4, atol=1e-4)
|
|
torch.testing.assert_close(pose_results[1]["keypoints"][:3].cpu(), expected_keypoints, rtol=1e-2, atol=1e-2)
|
|
torch.testing.assert_close(pose_results[1]["scores"][:3].cpu(), expected_scores, rtol=1e-4, atol=1e-4)
|
|
|
|
@slow
|
|
def test_batched_inference(self):
|
|
image_processor = self.default_image_processor
|
|
model = VitPoseForPoseEstimation.from_pretrained("usyd-community/vitpose-base-simple", device_map=torch_device)
|
|
|
|
image = prepare_img()
|
|
boxes = [
|
|
[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]],
|
|
[[412.8, 157.61, 53.05, 138.01], [384.43, 172.21, 15.12, 35.74]],
|
|
]
|
|
|
|
inputs = image_processor(images=[image, image], boxes=boxes, return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
heatmaps = outputs.heatmaps
|
|
|
|
assert heatmaps.shape == (4, 17, 64, 48)
|
|
|
|
expected_slice = torch.tensor(
|
|
[
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
[9.9330e-06, 9.9330e-06, 9.9330e-06],
|
|
]
|
|
).to(torch_device)
|
|
|
|
assert torch.allclose(heatmaps[0, 0, :3, :3], expected_slice, atol=1e-4)
|
|
|
|
pose_results = image_processor.post_process_pose_estimation(outputs, boxes=boxes)
|
|
print(pose_results)
|
|
|
|
expected_bbox = torch.tensor([391.9900, 190.0800, 391.1575, 189.3034])
|
|
expected_keypoints = torch.tensor(
|
|
[
|
|
[3.9813e02, 1.8184e02],
|
|
[3.9828e02, 1.7981e02],
|
|
[3.9596e02, 1.7948e02],
|
|
]
|
|
)
|
|
expected_scores = torch.tensor([8.7529e-01, 8.4315e-01, 9.2678e-01])
|
|
|
|
self.assertEqual(len(pose_results), 2)
|
|
self.assertEqual(len(pose_results[0]), 2)
|
|
torch.testing.assert_close(pose_results[0][1]["bbox"].cpu(), expected_bbox, rtol=1e-4, atol=1e-4)
|
|
torch.testing.assert_close(pose_results[0][1]["keypoints"][:3].cpu(), expected_keypoints, rtol=1e-2, atol=1e-2)
|
|
torch.testing.assert_close(pose_results[0][1]["scores"][:3].cpu(), expected_scores, rtol=1e-4, atol=1e-4)
|