mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

Some checks are pending
Self-hosted runner (benchmark) / Benchmark (aws-g5-4xlarge-cache) (push) Waiting to run
Build documentation / build (push) Waiting to run
Slow tests on important models (on Push - A10) / Get all modified files (push) Waiting to run
Slow tests on important models (on Push - A10) / Slow & FA2 tests (push) Blocked by required conditions
Self-hosted runner (push-caller) / Check if setup was changed (push) Waiting to run
Self-hosted runner (push-caller) / build-docker-containers (push) Blocked by required conditions
Self-hosted runner (push-caller) / Trigger Push CI (push) Blocked by required conditions
Secret Leaks / trufflehog (push) Waiting to run
Update Transformers metadata / build_and_package (push) Waiting to run
* enable misc test cases on XPU Signed-off-by: YAO Matrix <matrix.yao@intel.com> * fix style Signed-off-by: YAO Matrix <matrix.yao@intel.com> * tweak bamba ground truth on XPU Signed-off-by: YAO Matrix <matrix.yao@intel.com> * remove print Signed-off-by: YAO Matrix <matrix.yao@intel.com> * one more Signed-off-by: YAO Matrix <matrix.yao@intel.com> * fix style Signed-off-by: YAO Matrix <matrix.yao@intel.com> --------- Signed-off-by: YAO Matrix <matrix.yao@intel.com>
366 lines
17 KiB
Python
366 lines
17 KiB
Python
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import time
|
|
import unittest
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import requests
|
|
from packaging import version
|
|
|
|
from transformers.testing_utils import (
|
|
is_flaky,
|
|
require_torch,
|
|
require_torch_accelerator,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import VitMatteImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import VitMatteImageProcessorFast
|
|
|
|
|
|
class VitMatteImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_rescale=True,
|
|
rescale_factor=0.5,
|
|
do_pad=True,
|
|
size_divisibility=10,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
self.size_divisibility = size_divisibility
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_rescale": self.do_rescale,
|
|
"rescale_factor": self.rescale_factor,
|
|
"do_pad": self.do_pad,
|
|
"size_divisibility": self.size_divisibility,
|
|
}
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class VitMatteImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = VitMatteImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = VitMatteImageProcessorFast if is_torchvision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = VitMatteImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "do_pad"))
|
|
self.assertTrue(hasattr(image_processing, "size_divisibility"))
|
|
|
|
def test_call_numpy(self):
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[:2])
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-3] == 4)
|
|
|
|
def test_call_pytorch(self):
|
|
# create random PyTorch tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[1:])
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-3] == 4)
|
|
|
|
# create batched tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
|
image_input = torch.stack(image_inputs, dim=0)
|
|
self.assertIsInstance(image_input, torch.Tensor)
|
|
self.assertTrue(image_input.shape[1] == 3)
|
|
|
|
trimap_shape = [image_input.shape[0]] + [1] + list(image_input.shape)[2:]
|
|
trimap_input = torch.randint(0, 3, trimap_shape, dtype=torch.uint8)
|
|
self.assertIsInstance(trimap_input, torch.Tensor)
|
|
self.assertTrue(trimap_input.shape[1] == 1)
|
|
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-3] == 4)
|
|
|
|
def test_call_pil(self):
|
|
# create random PIL images
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.size[::-1])
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-3] == 4)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Test that can process images which have an arbitrary number of channels
|
|
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
# Test not batched input (image processor does not support batched inputs)
|
|
image = image_inputs[0]
|
|
trimap = np.random.randint(0, 3, size=image.shape[:2])
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
encoded_images = image_processor(
|
|
images=image,
|
|
trimaps=trimap,
|
|
input_data_format="channels_last",
|
|
image_mean=0,
|
|
image_std=1,
|
|
return_tensors="pt",
|
|
).pixel_values
|
|
|
|
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
|
|
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
|
|
self.assertTrue(encoded_images.shape[-3] == 5)
|
|
|
|
def test_padding_slow(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
image = np.random.randn(3, 249, 491)
|
|
images = image_processing.pad_image(image)
|
|
assert images.shape == (3, 256, 512)
|
|
|
|
image = np.random.randn(3, 249, 512)
|
|
images = image_processing.pad_image(image)
|
|
assert images.shape == (3, 256, 512)
|
|
|
|
def test_padding_fast(self):
|
|
# extra test because name is different for fast image processor
|
|
image_processing = self.fast_image_processing_class(**self.image_processor_dict)
|
|
image = torch.rand(3, 249, 491)
|
|
images = image_processing._pad_image(image)
|
|
assert images.shape == (3, 256, 512)
|
|
|
|
image = torch.rand(3, 249, 512)
|
|
images = image_processing._pad_image(image)
|
|
assert images.shape == (3, 256, 512)
|
|
|
|
def test_image_processor_preprocess_arguments(self):
|
|
# vitmatte require additional trimap input for image_processor
|
|
# that is why we override original common test
|
|
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
image = self.image_processor_tester.prepare_image_inputs()[0]
|
|
trimap = np.random.randint(0, 3, size=image.size[::-1])
|
|
|
|
with warnings.catch_warnings(record=True) as raised_warnings:
|
|
warnings.simplefilter("always")
|
|
image_processor(image, trimaps=trimap, extra_argument=True)
|
|
|
|
messages = " ".join([str(w.message) for w in raised_warnings])
|
|
self.assertGreaterEqual(len(raised_warnings), 1)
|
|
self.assertIn("extra_argument", messages)
|
|
|
|
@is_flaky()
|
|
def test_fast_is_faster_than_slow(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping speed test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
|
|
|
|
def measure_time(image_processor, images, trimaps):
|
|
# Warmup
|
|
for _ in range(5):
|
|
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
|
|
all_times = []
|
|
for _ in range(10):
|
|
start = time.time()
|
|
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
|
|
all_times.append(time.time() - start)
|
|
# Take the average of the fastest 3 runs
|
|
avg_time = sum(sorted(all_times[:3])) / 3.0
|
|
return avg_time
|
|
|
|
dummy_images = torch.randint(0, 255, (4, 3, 400, 800), dtype=torch.uint8)
|
|
dummy_trimaps = torch.randint(0, 3, (4, 400, 800), dtype=torch.uint8)
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
fast_time = measure_time(image_processor_fast, dummy_images, dummy_trimaps)
|
|
slow_time = measure_time(image_processor_slow, dummy_images, dummy_trimaps)
|
|
|
|
self.assertLessEqual(fast_time, slow_time)
|
|
|
|
def test_slow_fast_equivalence(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
dummy_image = Image.open(
|
|
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
|
|
)
|
|
dummy_trimap = np.random.randint(0, 3, size=dummy_image.size[::-1])
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
encoding_slow = image_processor_slow(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
|
|
encoding_fast = image_processor_fast(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
|
|
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
|
|
self.assertLessEqual(
|
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
|
|
)
|
|
|
|
def test_slow_fast_equivalence_batched(self):
|
|
# this only checks on equal resolution, since the slow processor doesn't work otherwise
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
|
|
self.skipTest(
|
|
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
|
|
)
|
|
|
|
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
|
dummy_trimaps = [np.random.randint(0, 3, size=image.shape[1:]) for image in dummy_images]
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
encoding_slow = image_processor_slow(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
|
|
encoding_fast = image_processor_fast(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
|
|
|
|
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
|
|
self.assertLessEqual(
|
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
|
|
)
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
@require_vision
|
|
def test_can_compile_fast_image_processor(self):
|
|
# override as trimaps are needed for the image processor
|
|
if self.fast_image_processing_class is None:
|
|
self.skipTest("Skipping compilation test as fast image processor is not defined")
|
|
if version.parse(torch.__version__) < version.parse("2.3"):
|
|
self.skipTest(reason="This test requires torch >= 2.3 to run.")
|
|
|
|
torch.compiler.reset()
|
|
input_image = torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8)
|
|
dummy_trimap = np.random.randint(0, 3, size=input_image.shape[1:])
|
|
image_processor = self.fast_image_processing_class(**self.image_processor_dict)
|
|
output_eager = image_processor(input_image, dummy_trimap, device=torch_device, return_tensors="pt")
|
|
|
|
image_processor = torch.compile(image_processor, mode="reduce-overhead")
|
|
output_compiled = image_processor(input_image, dummy_trimap, device=torch_device, return_tensors="pt")
|
|
|
|
torch.testing.assert_close(output_eager.pixel_values, output_compiled.pixel_values, rtol=1e-4, atol=1e-4)
|