mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* Make HF implementation match OLMo models for lower precisions * Add test of 1B logits in bfloat16 * Run make fixup
365 lines
16 KiB
Python
365 lines
16 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch OLMo2 model."""
|
|
|
|
import unittest
|
|
|
|
from packaging import version
|
|
from parameterized import parameterized
|
|
|
|
from transformers import Olmo2Config, is_torch_available, set_seed
|
|
from transformers.generation.configuration_utils import GenerationConfig
|
|
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
|
from transformers.testing_utils import (
|
|
require_tokenizers,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Olmo2ForCausalLM,
|
|
Olmo2Model,
|
|
)
|
|
|
|
|
|
class Olmo2ModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=False,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="silu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
pad_token_id=0,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.pad_token_id = pad_token_id
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return Olmo2Config(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
pad_token_id=self.pad_token_id,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = Olmo2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Olmo2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Olmo2Model, Olmo2ForCausalLM) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Olmo2Model,
|
|
"text-generation": Olmo2ForCausalLM,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_pruning = False
|
|
fx_compatible = False
|
|
|
|
# Need to use `0.8` instead of `0.9` for `test_cpu_offload`
|
|
# This is because we are hitting edge cases with the causal_mask buffer
|
|
model_split_percents = [0.5, 0.7, 0.8]
|
|
|
|
def setUp(self):
|
|
self.model_tester = Olmo2ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Olmo2Config, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="OLMo2 does not support head pruning.")
|
|
def test_headmasking(self):
|
|
pass
|
|
|
|
def test_model_various_embeddings(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
for type in ["absolute", "relative_key", "relative_key_query"]:
|
|
config_and_inputs[0].position_embedding_type = type
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@parameterized.expand([("linear",), ("dynamic",)])
|
|
def test_model_rope_scaling(self, scaling_type):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
short_input = ids_tensor([1, 10], config.vocab_size)
|
|
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
original_model = Olmo2Model(config)
|
|
original_model.to(torch_device)
|
|
original_model.eval()
|
|
original_short_output = original_model(short_input).last_hidden_state
|
|
original_long_output = original_model(long_input).last_hidden_state
|
|
|
|
set_seed(42) # Fixed seed at init time so the two models get the same random weights
|
|
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
|
|
scaled_model = Olmo2Model(config)
|
|
scaled_model.to(torch_device)
|
|
scaled_model.eval()
|
|
scaled_short_output = scaled_model(short_input).last_hidden_state
|
|
scaled_long_output = scaled_model(long_input).last_hidden_state
|
|
|
|
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
|
|
# maximum sequence length, so the outputs for the short input should match.
|
|
if scaling_type == "dynamic":
|
|
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
|
|
else:
|
|
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
|
|
|
|
# The output should be different for long inputs
|
|
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
|
|
|
|
|
|
@require_torch
|
|
class Olmo2IntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_model_1b_logits_bfloat16(self):
|
|
input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]]
|
|
model = Olmo2ForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B").to(torch.bfloat16)
|
|
out = model(torch.tensor(input_ids)).logits.float()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor([[-5.7094, -6.5548, -3.2527, -2.7847, -5.5092, -4.5223, -4.8427, -4.6867]])
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([2.4531, -5.7188, -5.1562, -4.8750, -6.7812, -4.0625, -4.4375, -4.5938, -7.5938, -5.0938, -3.9375, -3.6875, -5.0938, -3.1875, -5.6875, 0.2266, 1.2578, 1.1016, 0.8945, 0.4785, 0.2256, -0.3613, -0.4258, 0.1377, -0.1104, -7.1875, -5.2188, -6.8125, -0.9062, -2.9062]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
@slow
|
|
def test_model_7b_logits(self):
|
|
input_ids = [[1, 306, 4658, 278, 6593, 310, 2834, 338]]
|
|
model = Olmo2ForCausalLM.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
|
|
out = model(torch.tensor(input_ids)).logits.float()
|
|
# Expected mean on dim = -1
|
|
EXPECTED_MEAN = torch.tensor(
|
|
[[-13.0244, -13.9564, -11.8270, -11.3047, -12.3794, -12.4215, -15.6030, -12.7962]]
|
|
)
|
|
torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, rtol=1e-2, atol=1e-2)
|
|
# slicing logits[0, 0, 0:30]
|
|
EXPECTED_SLICE = torch.tensor([-5.3909, -13.9841, -13.6123, -14.5780, -13.9455, -13.2265, -13.4734, -11.9079, -9.2879, -12.6139, -11.4819, -5.9607, -11.9657, -6.3618, -11.1065, -7.3075, -6.5674, -6.7154, -7.3409, -7.9662, -8.0863, -8.1682, -8.7341, -8.7665, -8.8742, -9.7813, -8.0620, -12.5937, -7.6440, -11.3966]) # fmt: skip
|
|
torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
@slow
|
|
def test_model_7b_greedy_generation(self):
|
|
EXPECTED_TEXT_COMPLETION = """Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light is the fastest speed possible, and 3) the speed of light is the same for all observers, regardless of their relative motion. The theory of relativity is based on the idea that the speed of light is constant. This means that"""
|
|
prompt = "Simply put, the theory of relativity states that "
|
|
tokenizer = AutoTokenizer.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
|
|
model = Olmo2ForCausalLM.from_pretrained("shanearora/OLMo2-7B-1124-hf", device_map="auto")
|
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
|
|
|
# greedy generation outputs
|
|
generated_ids = model.generate(input_ids, max_new_tokens=64, top_p=None, temperature=1, do_sample=False)
|
|
text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
|
|
|
|
@require_tokenizers
|
|
def test_simple_encode_decode(self):
|
|
rust_tokenizer = AutoTokenizer.from_pretrained("shanearora/OLMo2-7B-1124-hf")
|
|
|
|
self.assertEqual(rust_tokenizer.encode("This is a test"), [2028, 374, 264, 1296])
|
|
self.assertEqual(rust_tokenizer.decode([2028, 374, 264, 1296], skip_special_tokens=True), "This is a test")
|
|
|
|
# bytefallback showcase
|
|
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [21990, 76706, 9554, 89151, 39013, 249, 21043]) # fmt: skip
|
|
self.assertEqual(
|
|
rust_tokenizer.decode([21990, 76706, 9554, 89151, 39013, 249, 21043], skip_special_tokens=True),
|
|
"生活的真谛是",
|
|
)
|
|
|
|
# Inner spaces showcase
|
|
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [13347, 220, 22691])
|
|
self.assertEqual(rust_tokenizer.decode([13347, 220, 22691], skip_special_tokens=True), "Hi Hello")
|
|
|
|
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [13347, 256, 22691])
|
|
self.assertEqual(rust_tokenizer.decode([13347, 256, 22691], skip_special_tokens=True), "Hi Hello")
|
|
|
|
self.assertEqual(rust_tokenizer.encode(""), [])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" "), [220])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" "), [256])
|
|
|
|
self.assertEqual(rust_tokenizer.encode(" Hello"), [22691])
|
|
|
|
@slow
|
|
def test_export_static_cache(self):
|
|
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
|
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
|
|
|
from transformers.integrations.executorch import (
|
|
TorchExportableModuleWithStaticCache,
|
|
convert_and_export_with_cache,
|
|
)
|
|
|
|
olmo2_model = "shanearora/OLMo2-7B-1124-hf"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(olmo2_model, pad_token="</s>", padding_side="right")
|
|
EXPECTED_TEXT_COMPLETION = [
|
|
"Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light",
|
|
]
|
|
max_generation_length = tokenizer(EXPECTED_TEXT_COMPLETION, return_tensors="pt", padding=True)[
|
|
"input_ids"
|
|
].shape[-1]
|
|
|
|
# Load model
|
|
device = "cpu"
|
|
dtype = torch.bfloat16
|
|
cache_implementation = "static"
|
|
attn_implementation = "sdpa"
|
|
batch_size = 1
|
|
generation_config = GenerationConfig(
|
|
use_cache=True,
|
|
cache_implementation=cache_implementation,
|
|
max_length=max_generation_length,
|
|
cache_config={
|
|
"batch_size": batch_size,
|
|
"max_cache_len": max_generation_length,
|
|
},
|
|
)
|
|
model = Olmo2ForCausalLM.from_pretrained(
|
|
olmo2_model,
|
|
device_map=device,
|
|
torch_dtype=dtype,
|
|
attn_implementation=attn_implementation,
|
|
generation_config=generation_config,
|
|
)
|
|
|
|
prompts = ["Simply put, the theory of relativity states that "]
|
|
prompt_tokens = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)
|
|
prompt_token_ids = prompt_tokens["input_ids"]
|
|
max_new_tokens = max_generation_length - prompt_token_ids.shape[-1]
|
|
|
|
# Static Cache + eager
|
|
eager_generated_ids = model.generate(
|
|
**prompt_tokens, max_new_tokens=max_new_tokens, do_sample=False, cache_implementation=cache_implementation
|
|
)
|
|
eager_generated_text = tokenizer.batch_decode(eager_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, eager_generated_text)
|
|
|
|
# Static Cache + export
|
|
exported_program = convert_and_export_with_cache(model)
|
|
ep_generated_ids = TorchExportableModuleWithStaticCache.generate(
|
|
exported_program=exported_program, prompt_token_ids=prompt_token_ids, max_new_tokens=max_new_tokens
|
|
)
|
|
ep_generated_text = tokenizer.batch_decode(ep_generated_ids, skip_special_tokens=True)
|
|
self.assertEqual(EXPECTED_TEXT_COMPLETION, ep_generated_text)
|