transformers/tests/models/mimi/test_modeling_mimi.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

569 lines
22 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Mimi model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from pytest import mark
from transformers import AutoFeatureExtractor, MimiConfig
from transformers.testing_utils import (
is_flaky,
is_torch_available,
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import MimiModel
# Copied from transformers.tests.encodec.test_modeling_encodec.prepare_inputs_dict
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class MimiModelTester:
def __init__(
self,
parent,
batch_size=5,
num_channels=1,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
codebook_size=64,
vector_quantization_hidden_dimension=64,
codebook_dim=64,
upsample_groups=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
sliding_window=4,
use_cache=False,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.codebook_size = codebook_size
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.codebook_dim = codebook_dim
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.sliding_window = sliding_window
self.use_cache = use_cache
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config, inputs_dict = self.prepare_config_and_inputs()
inputs_dict["audio_codes"] = ids_tensor([self.batch_size, 1, self.num_channels], self.codebook_size).type(
torch.int32
)
return config, inputs_dict
def get_config(self):
return MimiConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
codebook_size=self.codebook_size,
vector_quantization_hidden_dimension=self.vector_quantization_hidden_dimension,
upsample_groups=self.upsample_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
sliding_window=self.sliding_window,
codebook_dim=self.codebook_dim,
use_cache=self.use_cache,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = MimiModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class MimiModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (MimiModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
test_torchscript = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = MimiModelTester(self)
self.config_tester = ConfigTester(
self, config_class=MimiConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "num_quantizers"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest._create_and_check_torchscript
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_determinism
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_model_outputs_equivalence
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
self.assertTrue(isinstance(tuple_output, tuple))
self.assertTrue(isinstance(dict_output, dict))
for tuple_value, dict_value in zip(tuple_output, dict_output.values()):
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_value), set_nan_tensor_to_zero(dict_value), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_value - dict_value))}. Tuple has `nan`:"
f" {torch.isnan(tuple_value).any()} and `inf`: {torch.isinf(tuple_value)}. Dict has"
f" `nan`: {torch.isnan(dict_value).any()} and `inf`: {torch.isinf(dict_value)}."
),
)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv", "input_proj", "output_proj"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_identity_shortcut
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_2_inference_equivalence(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_input = inputs_dict[model.main_input_name][:1]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
outputs = model(dummy_input)
outputs_fa = model_fa(dummy_input)
logits = outputs[1]
logits_fa = outputs_fa[1]
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
@unittest.skip(reason="The MimiModel does not support right padding")
def test_flash_attn_2_inference_equivalence_right_padding(self):
pass
@unittest.skip(reason="The MimiModel does not have support dynamic compile yet")
def test_sdpa_can_compile_dynamic(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.normalize
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
# Copied from transformers.tests.encodec.test_modeling_encodec.compute_rmse
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class MimiIntegrationTest(unittest.TestCase):
def test_integration_using_cache_decode(self):
expected_rmse = {
"8": 0.0018785292,
"32": 0.0012330565,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
model = MimiModel.from_pretrained(model_id, use_cache=True).to(torch_device)
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for num_codebooks, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwidth for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_codes = encoder_outputs[0]
decoder_outputs_first_part = model.decode(audio_codes[:, :, : audio_codes.shape[2] // 2])
decoder_outputs_second_part = model.decode(
audio_codes[:, :, audio_codes.shape[2] // 2 :],
decoder_past_key_values=decoder_outputs_first_part.decoder_past_key_values,
)
audio_output_entire_context = model.decode(audio_codes)[0]
audio_output_concat_context = torch.cat(
[decoder_outputs_first_part[0], decoder_outputs_second_part[0]], dim=2
)
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(
audio_output_concat_context.squeeze().cpu().numpy(),
audio_output_entire_context.squeeze().cpu().numpy(),
)
self.assertTrue(rmse < 1e-3)
def test_integration(self):
expected_rmses = {
"8": 0.0018785292,
"32": 0.0012330565,
}
expected_codesums = {
"8": 426176,
"32": 1795819,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for use_cache in [False, True]:
model = MimiModel.from_pretrained(model_id, use_cache=use_cache).to(torch_device)
for num_codebooks, expected_rmse in expected_rmses.items():
with torch.no_grad():
# use max bandwidth for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_code_sums = encoder_outputs[0].sum().item()
# make sure audio encoded codes are correct
# assert relative difference less than a threshold, because `audio_code_sums` varies a bit
# depending on torch version
self.assertTrue(
np.abs(audio_code_sums - expected_codesums[num_codebooks]) <= (3e-3 * audio_code_sums)
)
input_values_dec = model.decode(encoder_outputs[0], padding_mask=inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], num_quantizers=int(num_codebooks)
)[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec)
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(np.abs(rmse - expected_rmse) < 1e-5)