mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 14:20:04 +06:00

* fix * fix * fix * fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
592 lines
24 KiB
Python
592 lines
24 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Llava-NeXT model."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
from parameterized import parameterized
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
LlavaOnevisionConfig,
|
|
LlavaOnevisionForConditionalGeneration,
|
|
LlavaOnevisionModel,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
Expectations,
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
_config_zero_init,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class LlavaOnevisionVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=1,
|
|
projector_hidden_act="gelu",
|
|
seq_length=7,
|
|
vision_feature_select_strategy="full",
|
|
vision_feature_layer=-1,
|
|
text_config={
|
|
"model_type": "qwen2",
|
|
"seq_length": 7,
|
|
"is_training": True,
|
|
"use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"num_key_value_heads": 4,
|
|
"intermediate_size": 37,
|
|
"hidden_act": "gelu",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 580,
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 0,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"image_size": 16,
|
|
"patch_size": 8,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
self.image_token_index = image_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
self.num_image_tokens = 10
|
|
self.seq_length = seq_length + self.num_image_tokens
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 3
|
|
self.num_channels = 3
|
|
self.image_size = 30
|
|
self.image_grid_pinpoints = [[16, 16]]
|
|
|
|
def get_config(self):
|
|
return LlavaOnevisionConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
ignore_index=self.ignore_index,
|
|
image_token_index=self.image_token_index,
|
|
projector_hidden_act=self.projector_hidden_act,
|
|
vision_feature_select_strategy=self.vision_feature_select_strategy,
|
|
vision_feature_layer=self.vision_feature_layer,
|
|
image_grid_pinpoints=self.image_grid_pinpoints,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
3,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device)
|
|
|
|
input_ids[input_ids == config.image_token_index] = self.pad_token_id
|
|
input_ids[:, : self.num_image_tokens] = config.image_token_index
|
|
|
|
labels = torch.zeros((self.batch_size, self.seq_length), dtype=torch.long, device=torch_device)
|
|
labels[:, : self.num_image_tokens] == self.ignore_index
|
|
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"image_sizes": torch.tensor([[45, 45]] * self.batch_size),
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"labels": labels,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class LlavaOnevisionForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `LlavaOnevisionForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(
|
|
LlavaOnevisionModel,
|
|
LlavaOnevisionForConditionalGeneration,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{"image-text-to-text": LlavaOnevisionForConditionalGeneration} if is_torch_available() else {}
|
|
)
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["Siglip2MultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = LlavaOnevisionVisionText2TextModelTester(self)
|
|
common_properties = ["image_token_index", "video_token_index", "vision_feature_layer"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=LlavaOnevisionConfig, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
# LLaVa Onevision has SigLIP backbone which init weights differently from CLIP
|
|
if "image_newline" in name or "vision_tower" in name:
|
|
continue
|
|
elif param.requires_grad:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
def test_odd_sized_image(self):
|
|
# prepare model configuration
|
|
config = self.model_tester.get_config()
|
|
|
|
# prepare input
|
|
num_image_tokens = 10
|
|
pixel_values = floats_tensor([1, 2, 3, config.vision_config.image_size, config.vision_config.image_size])
|
|
input_ids = ids_tensor([1, 64], config.text_config.vocab_size - 2) + 2
|
|
input_ids[:, :num_image_tokens] = config.image_token_index
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device)
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"image_sizes": torch.tensor([[13, 16]]), # odd-sized image
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
|
|
# forward with odd-sized image input
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model(**inputs_dict)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
(-1,),
|
|
([-1],),
|
|
([-1, -2],),
|
|
],
|
|
)
|
|
def test_vision_feature_layers(self, vision_feature_layer):
|
|
"""
|
|
Test that we can use either one vision feature layer, or a list of
|
|
vision feature layers.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.vision_feature_layer = vision_feature_layer
|
|
|
|
num_feature_layers = 1 if isinstance(vision_feature_layer, int) else len(vision_feature_layer)
|
|
hidden_size = config.vision_config.hidden_size
|
|
expected_features = hidden_size * num_feature_layers
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
# We should have the right number of input features,
|
|
# and should be able to run a forward pass without exploding
|
|
base_model = getattr(model, "model", model)
|
|
assert base_model.multi_modal_projector.linear_1.in_features == expected_features
|
|
model(**input_dict)
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, SiglipVisionModel does not support standalone training"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, SiglipVisionModel does not support standalone training"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, SiglipVisionModel does not support standalone training"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
|
|
)
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class LlavaOnevisionForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf", padding_side="left"
|
|
)
|
|
image_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/images_test", filename="llava_v1_5_radar.jpg", repo_type="dataset"
|
|
)
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
self.image = Image.open(image_file)
|
|
self.video = np.load(video_file)
|
|
self.prompt_image = "user\n<image>\nWhat do you see in this image?<|im_end|>\n<|im_start|>assistant\n"
|
|
self.prompt_video = "user\n<video>\nWhat do you see in this video?<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf", torch_dtype="float16", device_map=torch_device
|
|
)
|
|
|
|
inputs = self.processor(images=self.image, text=self.prompt_image, return_tensors="pt").to(
|
|
torch_device, torch.float16
|
|
)
|
|
self.assertTrue(inputs.input_ids.shape[1] == 6567) # should expand num-image-tokens times
|
|
self.assertTrue(inputs.pixel_values.shape == torch.Size([1, 10, 3, 384, 384]))
|
|
self.assertTrue(inputs.image_sizes.tolist() == [[899, 1024]])
|
|
|
|
# verify single forward pass
|
|
inputs = inputs.to(torch_device)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=100)
|
|
|
|
EXPECTED_DECODED_TEXTS = Expectations(
|
|
{
|
|
("cuda", 7): 'user\n\nWhat do you see in this image?\nassistant\nThe image is a radar chart that compares the performance of different models in a specific task, likely related to natural language processing or machine learning. The chart is divided into several axes, each representing a different model or method. The models are color-coded and labeled with their respective names. The axes are labeled with terms such as "VQA," "GQA," "MQA," "VQAv2," "MM-Vet," "LLaVA-Bench," "LLaVA-1',
|
|
("cuda", 8): 'user\n\nWhat do you see in this image?\nassistant\nThe image is a radar chart that compares the performance of different models in a specific task, likely related to natural language processing or machine learning. The chart is divided into several axes, each representing a different model or method. The models are color-coded and labeled with their respective names. The axes are labeled with terms such as "VQA," "GQA," "MQA," "VIZ," "TextVQA," "SQA-IMG," and "MQE." The radar chart shows',
|
|
}
|
|
) # fmt: skip
|
|
EXPECTED_DECODED_TEXT = EXPECTED_DECODED_TEXTS.get_expectation()
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_batch(self):
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf", torch_dtype="float16", device_map=torch_device
|
|
)
|
|
|
|
inputs = self.processor(
|
|
text=[self.prompt_image, self.prompt_video],
|
|
images=self.image,
|
|
videos=self.video,
|
|
return_tensors="pt",
|
|
padding=True,
|
|
).to(torch_device, torch.float16)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = ['user\n\nWhat do you see in this image?\nassistant\nThe image is a radar chart that compares the performance of different models in a specific task, likely related', 'user\n\nWhat do you see in this video?\nassistant\nA child wearing a light blue sleeveless top and pink pants is seen sitting on a bed, eng'] # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.batch_decode(output, skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_video(self):
|
|
# related to (#29835)
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
torch_dtype="float16",
|
|
device_map=torch_device,
|
|
)
|
|
|
|
inputs = self.processor(text=self.prompt_video, videos=self.video, return_tensors="pt").to(
|
|
torch_device, torch.float16
|
|
)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=40)
|
|
EXPECTED_DECODED_TEXT = 'user\n\nWhat do you see in this video?\nassistant\nA child wearing a light blue sleeveless top and pink pants is seen sitting on a bed, engrossed in reading a book.' # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_multi_image(self):
|
|
# related to (#29835)
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
torch_dtype="float16",
|
|
device_map=torch_device,
|
|
)
|
|
|
|
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
prompt = (
|
|
"user\n<image><image>\nWhat is the difference between these images?<|im_end|>\n<|im_start|>assistant\n"
|
|
)
|
|
inputs = self.processor(text=prompt, images=[self.image, image], return_tensors="pt").to(
|
|
torch_device, torch.float16
|
|
)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=40)
|
|
EXPECTED_DECODED_TEXT = "user\n\nWhat is the difference between these images?\nassistant\nThe images you've provided appear to be related to a graphical representation of a radar chart, which is a type of data visualization used to show the distribution of a particular variable across a geographic area. The" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_multi_image_nested(self):
|
|
# related to (#34585)
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
torch_dtype="float16",
|
|
device_map=torch_device,
|
|
)
|
|
|
|
url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
prompt = (
|
|
"user\n<image><image>\nWhat is the difference between these images?<|im_end|>\n<|im_start|>assistant\n"
|
|
)
|
|
images_nested = [[self.image, image]]
|
|
inputs = self.processor(text=prompt, images=images_nested, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=40)
|
|
EXPECTED_DECODED_TEXT = "user\n\nWhat is the difference between these images?\nassistant\nThe first image is a radar chart showing the performance of different models in a specific task, while the second image is a street scene with a stop sign in the foreground." # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_multi_video(self):
|
|
# related to (#29835)
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
torch_dtype="float16",
|
|
device_map=torch_device,
|
|
)
|
|
|
|
prompt = "user\n<video><video>\nAre these videos identical?<|im_end|>\n<|im_start|>assistant\n"
|
|
inputs = self.processor(text=prompt, videos=[self.video, self.video], return_tensors="pt").to(
|
|
torch_device, torch.float16
|
|
)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=40)
|
|
EXPECTED_DECODED_TEXT = "user\n\nAre these videos identical?\nassistant\nNo, the video is not identical; it shows slight variations in the child's actions and the background." # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_batch_different_resolutions(self):
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf", torch_dtype="float16", device_map=torch_device
|
|
)
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
|
|
cats_image = Image.open(requests.get(url, stream=True).raw)
|
|
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
|
|
|
|
inputs = self.processor(
|
|
text=[self.prompt_image, self.prompt_image],
|
|
images=[lowres_img, cats_image],
|
|
return_tensors="pt",
|
|
padding=True,
|
|
).to(torch_device, torch.float16)
|
|
|
|
# verify generation
|
|
output = model.generate(**inputs, max_new_tokens=50)
|
|
EXPECTED_DECODED_TEXT = [
|
|
'user\n\nWhat do you see in this image?\nassistant\nThe image shows a scene of two deer in a grassy area with trees in the background. The weather appears to be foggy, giving the scene a misty and somewhat mysterious atmosphere. The deer are standing close to each other, possibly grazing or',
|
|
'user\n\nWhat do you see in this image?\nassistant\nIn the tranquil setting of this image, two cats are enjoying a peaceful nap on a vibrant pink blanket. The cat on the left, with its gray and black striped fur, is lying on its side, its head comfortably resting on the blanket. Its',
|
|
] # fmt: skip
|
|
self.assertEqual(
|
|
self.processor.batch_decode(output, skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_batch_matches_single(self):
|
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
|
"llava-hf/llava-onevision-qwen2-0.5b-ov-hf",
|
|
torch_dtype="float16",
|
|
device_map=torch_device,
|
|
)
|
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
|
|
cats_image = Image.open(requests.get(url, stream=True).raw)
|
|
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
|
|
|
|
inputs_batched = self.processor(
|
|
text=[self.prompt_image, self.prompt_image],
|
|
images=[lowres_img, cats_image],
|
|
return_tensors="pt",
|
|
padding=True,
|
|
).to(torch_device, torch.float16)
|
|
|
|
inputs_single = self.processor(
|
|
text=self.prompt_image, images=lowres_img, return_tensors="pt", padding=True
|
|
).to(torch_device, torch.float16)
|
|
|
|
# verify generation
|
|
output_batched = model.generate(**inputs_batched, max_new_tokens=50)
|
|
output_single = model.generate(**inputs_single, max_new_tokens=50)
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output_batched[0], skip_special_tokens=True),
|
|
self.processor.decode(output_single[0], skip_special_tokens=True),
|
|
)
|