transformers/tests/models/internvl/test_processor_internvl.py
Raushan Turganbay 27459025b8
[video processors] support frame sampling within processors (#38105)
* apply updates smolVLM (still needs workaround for chat template)

* add other models

* dump qwen omni for now, come back later

* port qwen omni from their impl

* wait, all qwens sample videos in same way!

* clean up

* make smolvlm backwards compatible and fix padding

* dix some tests

* fox smolvlm tests

* more clean up and test fixing

* delete unused arg

* fix

* address comments

* style

* fix test
2025-06-12 09:34:30 +00:00

345 lines
13 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import shutil
import tempfile
import unittest
from parameterized import parameterized
from transformers import AutoProcessor, AutoTokenizer, InternVLProcessor
from transformers.testing_utils import require_av, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_processing_common import MODALITY_INPUT_DATA, ProcessorTesterMixin
if is_torch_available():
import torch
if is_vision_available():
from transformers import GotOcr2ImageProcessor, InternVLVideoProcessor
@require_vision
class InternVLProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = InternVLProcessor
videos_input_name = "pixel_values"
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
image_processor = GotOcr2ImageProcessor(
do_resize=True,
size={"height": 20, "width": 20},
max_patches=2,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
do_center_crop=True,
image_mean=[0.485, 0.456, 0.406],
image_std=[0.229, 0.224, 0.225],
do_convert_rgb=True,
)
video_processor = InternVLVideoProcessor(
do_resize=True,
size={"height": 20, "width": 20},
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=[0.485, 0.456, 0.406],
image_std=[0.229, 0.224, 0.225],
do_convert_rgb=True,
)
tokenizer = AutoTokenizer.from_pretrained("OpenGVLab/InternVL3-1B-hf", padding_side="left")
processor_kwargs = cls.prepare_processor_dict()
processor = InternVLProcessor(
image_processor=image_processor,
tokenizer=tokenizer,
video_processor=video_processor,
**processor_kwargs,
)
processor.save_pretrained(cls.tmpdirname)
cls.image_token = processor.image_token
cls.video_token = processor.video_token
@staticmethod
def prepare_processor_dict():
return {"image_seq_length": 2}
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def get_video_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
def get_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs)
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
@require_av
@require_torch
def test_process_interleaved_images_videos(self):
processor = self.get_processor()
messages = [
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{"type": "text", "text": "What are the differences between these two images?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://llava-vl.github.io/static/images/view.jpg",
},
{"type": "text", "text": "Write a haiku for this image"},
],
}
],
]
inputs_batched = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
num_frames=8,
)
# Process non batched inputs to check if the pixel_values and input_ids are reconstructed in the correct order when batched together
images_patches_index = 0
for i, message in enumerate(messages):
inputs = processor.apply_chat_template(
message,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
num_frames=8,
)
# We slice with [-inputs["input_ids"].shape[1] :] as the input_ids are left padded
torch.testing.assert_close(
inputs["input_ids"][0], inputs_batched["input_ids"][i][-inputs["input_ids"].shape[1] :]
)
torch.testing.assert_close(
inputs["pixel_values"],
inputs_batched["pixel_values"][
images_patches_index : images_patches_index + inputs["pixel_values"].shape[0]
],
)
images_patches_index += inputs["pixel_values"].shape[0]
@require_torch
@require_av
def test_apply_chat_template_video_frame_sampling(self):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
signature = inspect.signature(processor.__call__)
if "videos" not in {*signature.parameters.keys()} or (
signature.parameters.get("videos") is not None
and signature.parameters["videos"].annotation == inspect._empty
):
self.skipTest("Processor doesn't accept videos at input")
messages = [
[
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
},
{"type": "text", "text": "What is shown in this video?"},
],
},
]
]
num_frames = 3
out_dict_with_video = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
num_frames=num_frames,
return_tensors="pt",
)
self.assertTrue(self.videos_input_name in out_dict_with_video)
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), num_frames)
# Load with `video_fps` arg is not possible with InternVL (skip)
# Load without any arg should use the default loading method
out_dict_with_video = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
self.assertTrue(self.videos_input_name in out_dict_with_video)
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 300)
# Load video as a list of frames (i.e. images). NOTE: each frame should have same size
# because we assume they come from one video
messages[0][0]["content"][0] = {
"type": "video",
"url": [
"https://www.ilankelman.org/stopsigns/australia.jpg",
"https://www.ilankelman.org/stopsigns/australia.jpg",
],
}
out_dict_with_video = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
self.assertTrue(self.videos_input_name in out_dict_with_video)
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 2)
@require_av
@parameterized.expand([(1, "pt"), (2, "pt")])
def test_apply_chat_template_video(self, batch_size: int, return_tensors: str):
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
if "video_processor" not in self.processor_class.attributes:
self.skipTest(f"`video_processor` attribute not present in {self.processor_class}")
batch_messages = [
[
{
"role": "user",
"content": [{"type": "text", "text": "Describe this."}],
},
]
] * batch_size
# Test that jinja can be applied
formatted_prompt = processor.apply_chat_template(batch_messages, add_generation_prompt=True, tokenize=False)
self.assertEqual(len(formatted_prompt), batch_size)
# Test that tokenizing with template and directly with `self.tokenizer` gives same output
formatted_prompt_tokenized = processor.apply_chat_template(
batch_messages, add_generation_prompt=True, tokenize=True, return_tensors="pt"
)
add_special_tokens = True
if processor.tokenizer.bos_token is not None and formatted_prompt[0].startswith(processor.tokenizer.bos_token):
add_special_tokens = False
tok_output = processor.tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=add_special_tokens)
expected_output = tok_output.input_ids
self.assertListEqual(expected_output.tolist(), formatted_prompt_tokenized.tolist())
# Test that kwargs passed to processor's `__call__` are actually used
tokenized_prompt_100 = processor.apply_chat_template(
batch_messages,
add_generation_prompt=True,
tokenize=True,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=100,
)
self.assertEqual(len(tokenized_prompt_100[0]), 100)
# Test that `return_dict=True` returns text related inputs in the dict
out_dict_text = processor.apply_chat_template(
batch_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
)
self.assertTrue(all(key in out_dict_text for key in ["input_ids", "attention_mask"]))
self.assertEqual(len(out_dict_text["input_ids"]), batch_size)
self.assertEqual(len(out_dict_text["attention_mask"]), batch_size)
# Test that with modality URLs and `return_dict=True`, we get modality inputs in the dict
for idx, url in enumerate(MODALITY_INPUT_DATA["videos"][:batch_size]):
batch_messages[idx][0]["content"] = [batch_messages[idx][0]["content"][0], {"type": "video", "url": url}]
out_dict = processor.apply_chat_template(
batch_messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
num_frames=2, # by default no more than 2 frames, otherwise too slow
)
self.assertTrue(self.videos_input_name in out_dict)
self.assertEqual(len(out_dict["input_ids"]), batch_size)
self.assertEqual(len(out_dict["attention_mask"]), batch_size)
video_len = 2 if batch_size == 1 else 3 # InternVL patches out and removes frames after processing
self.assertEqual(len(out_dict[self.videos_input_name]), video_len)
for k in out_dict:
self.assertIsInstance(out_dict[k], torch.Tensor)
# Test continue from final message
assistant_message = {
"role": "assistant",
"content": [{"type": "text", "text": "It is the sound of"}],
}
for batch_idx in range(batch_size):
batch_messages[batch_idx] = batch_messages[batch_idx] + [assistant_message]
continue_prompt = processor.apply_chat_template(batch_messages, continue_final_message=True, tokenize=False)
for prompt in continue_prompt:
self.assertTrue(prompt.endswith("It is the sound of")) # no `eos` token at the end