transformers/tests/models/dac/test_modeling_dac.py
Cyril Vallez 4b8ec667e9
Remove all traces of low_cpu_mem_usage (#38792)
* remove it from all py files

* remove it from the doc

* remove it from examples

* style

* remove traces of _fast_init

* Update test_peft_integration.py

* CIs
2025-06-12 16:39:33 +02:00

745 lines
31 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Dac model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from transformers import AutoProcessor, DacConfig, DacModel
from transformers.testing_utils import is_torch_available, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
@require_torch
# Copied from transformers.tests.encodec.test_modeling_encodec.EncodecModelTester with Encodec->Dac
class DacModelTester:
# Ignore copy
def __init__(
self,
parent,
batch_size=3,
num_channels=1,
is_training=False,
intermediate_size=1024,
encoder_hidden_size=16,
downsampling_ratios=[2, 4, 4],
decoder_hidden_size=16,
n_codebooks=6,
codebook_size=512,
codebook_dim=4,
quantizer_dropout=0.0,
commitment_loss_weight=0.25,
codebook_loss_weight=1.0,
sample_rate=16000,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.sample_rate = sample_rate
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_hidden_size = decoder_hidden_size
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer_dropout = quantizer_dropout
self.commitment_loss_weight = commitment_loss_weight
self.codebook_loss_weight = codebook_loss_weight
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
# Ignore copy
def get_config(self):
return DacConfig(
encoder_hidden_size=self.encoder_hidden_size,
downsampling_ratios=self.downsampling_ratios,
decoder_hidden_size=self.decoder_hidden_size,
n_codebooks=self.n_codebooks,
codebook_size=self.codebook_size,
codebook_dim=self.codebook_dim,
quantizer_dropout=self.quantizer_dropout,
commitment_loss_weight=self.commitment_loss_weight,
codebook_loss_weight=self.codebook_loss_weight,
)
# Ignore copy
def create_and_check_model_forward(self, config, inputs_dict):
model = DacModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(result.audio_values.shape, (self.batch_size, self.intermediate_size))
@require_torch
# Copied from transformers.tests.encodec.test_modeling_encodec.EncodecModelTest with Encodec->Dac
class DacModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (DacModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
pipeline_model_mapping = {"feature-extraction": DacModel} if is_torch_available() else {}
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does not have attention and does not support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = DacModelTester(self)
self.config_tester = ConfigTester(
self, config_class=DacConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
# TODO (ydshieh): Although we have a potential cause, it's still strange that this test fails all the time with large differences
@unittest.skip(reason="Might be caused by `indices` computed with `max()` in `decode_latents`")
def test_batching_equivalence(self):
super().test_batching_equivalence()
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
# Ignore copy
expected_arg_names = ["input_values", "n_quantizers", "return_dict"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip("The DacModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
@unittest.skip("The DacModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (list, tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
# Ignore copy
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv", "in_proj", "out_proj", "codebook"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class DacIntegrationTest(unittest.TestCase):
def test_integration_16khz(self):
expected_rmse = 0.004
expected_encoder_sums_dict = {
"loss": 24.8596,
"quantized_representation": -0.0745,
"audio_codes": 504.0948,
"projected_latents": 0.0682,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_16khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id, force_download=True).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_24khz(self):
expected_rmse = 0.0039
expected_encoder_output_dict = {
"quantized_representation": torch.tensor([0.6257, 3.1245, 5.2514, 2.3160, 1.5774]),
"audio_codes": torch.tensor([919, 919, 234, 777, 234]),
"projected_latents": torch.tensor([-4.7841, -5.0063, -4.5595, -5.0372, -5.4280]),
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_24khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id, force_download=True).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_quantized_representation = encoder_outputs["quantized_representation"][0, 0, :5].cpu()
expected_audio_codes = encoder_outputs["audio_codes"][0, 0, :5].cpu()
expected_projected_latents = encoder_outputs["projected_latents"][0, 0, :5].cpu()
# make sure values are correct for audios slices
self.assertTrue(
torch.allclose(
expected_quantized_representation,
expected_encoder_output_dict["quantized_representation"],
atol=1e-3,
)
)
self.assertTrue(
torch.allclose(expected_audio_codes, expected_encoder_output_dict["audio_codes"], atol=1e-3)
)
self.assertTrue(
torch.allclose(
expected_projected_latents, expected_encoder_output_dict["projected_latents"], atol=1e-3
)
)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
input_values_from_codes = model.decode(audio_codes=encoder_outputs.audio_codes)[0]
# make sure decode from audio codes and quantized values give more or less the same results
torch.testing.assert_close(input_values_from_codes, input_values_dec, rtol=1e-5, atol=1e-5)
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_44khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 34.3612,
"quantized_representation": 0.0078,
"audio_codes": 509.6812,
"projected_latents": -0.1054,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_44khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id).to(torch_device).eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[0]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_16khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 20.3913,
"quantized_representation": -0.0538,
"audio_codes": 487.8470,
"projected_latents": 0.0237,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_16khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_24khz(self):
expected_rmse = 0.002
expected_encoder_sums_dict = {
"loss": 24.2309,
"quantized_representation": 0.0520,
"audio_codes": 510.2700,
"projected_latents": -0.0076,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_24khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)
def test_integration_batch_44khz(self):
expected_rmse = 0.001
expected_encoder_sums_dict = {
"loss": 25.9233,
"quantized_representation": 0.0013,
"audio_codes": 528.5620,
"projected_latents": -0.1194,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_name = "dac_44khz"
model_id = f"descript/{model_name}"
model = DacModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [np.array([audio_sample["array"]])[0] for audio_sample in librispeech_dummy[-2:]["audio"]]
inputs = processor(
raw_audio=audio_samples,
sampling_rate=processor.sampling_rate,
truncation=False,
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
encoder_outputs = model.encode(inputs["input_values"])
expected_encoder_sums = torch.tensor(list(expected_encoder_sums_dict.values()), dtype=torch.float32)
encoder_outputs_mean = torch.tensor([v.float().mean().cpu().item() for v in encoder_outputs.to_tuple()])
# make sure audio encoded codes are correct
torch.testing.assert_close(encoder_outputs_mean, expected_encoder_sums, rtol=1e-3, atol=1e-3)
_, quantized_representation, _, _ = encoder_outputs.to_tuple()
input_values_dec = model.decode(quantized_representation)[0]
input_values_enc_dec = model(inputs["input_values"])[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec, rtol=1e-3, atol=1e-3)
arr = inputs["input_values"].cpu().numpy()
arr_enc_dec = input_values_enc_dec.cpu().numpy()
max_length = min(arr_enc_dec.shape[-1], arr.shape[-1])
arr_cut = arr[:, 0, :max_length].copy()
arr_enc_dec_cut = arr_enc_dec[:, :max_length].copy()
# make sure audios are more or less equal
rmse = compute_rmse(arr_cut, arr_enc_dec_cut)
self.assertTrue(rmse < expected_rmse)