mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* Protect ParallelInterface * early error out on output attention setting for no wraning in modeling * modular update * fixup * update model tests * update * oups * set model's config * more cases * ?? * properly fix * fixup * update * last onces * update * fix? * fix wrong merge commit * fix hub test * nits * wow I am tired * updates * fix pipeline! --------- Co-authored-by: Lysandre <hi@lysand.re>
832 lines
37 KiB
Python
832 lines
37 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch DAB-DETR model."""
|
|
|
|
import inspect
|
|
import math
|
|
import unittest
|
|
|
|
from transformers import DabDetrConfig, ResNetConfig, is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_timm, require_torch, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from transformers import (
|
|
DabDetrForObjectDetection,
|
|
DabDetrModel,
|
|
)
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ConditionalDetrImageProcessor
|
|
|
|
|
|
class DabDetrModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=8,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=8,
|
|
intermediate_size=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
num_queries=12,
|
|
num_channels=3,
|
|
min_size=200,
|
|
max_size=200,
|
|
n_targets=8,
|
|
num_labels=91,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.num_queries = num_queries
|
|
self.num_channels = num_channels
|
|
self.min_size = min_size
|
|
self.max_size = max_size
|
|
self.n_targets = n_targets
|
|
self.num_labels = num_labels
|
|
|
|
# we also set the expected seq length for both encoder and decoder
|
|
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32)
|
|
self.decoder_seq_length = self.num_queries
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size])
|
|
|
|
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device)
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
|
|
labels = []
|
|
for i in range(self.batch_size):
|
|
target = {}
|
|
target["class_labels"] = torch.randint(
|
|
high=self.num_labels, size=(self.n_targets,), device=torch_device
|
|
)
|
|
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
|
|
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device)
|
|
labels.append(target)
|
|
|
|
config = self.get_config()
|
|
return config, pixel_values, pixel_mask, labels
|
|
|
|
def get_config(self):
|
|
resnet_config = ResNetConfig(
|
|
num_channels=3,
|
|
embeddings_size=10,
|
|
hidden_sizes=[10, 20, 30, 40],
|
|
depths=[1, 1, 2, 1],
|
|
hidden_act="relu",
|
|
num_labels=3,
|
|
out_features=["stage2", "stage3", "stage4"],
|
|
out_indices=[2, 3, 4],
|
|
)
|
|
return DabDetrConfig(
|
|
hidden_size=self.hidden_size,
|
|
encoder_layers=self.num_hidden_layers,
|
|
decoder_layers=self.num_hidden_layers,
|
|
encoder_attention_heads=self.num_attention_heads,
|
|
decoder_attention_heads=self.num_attention_heads,
|
|
encoder_ffn_dim=self.intermediate_size,
|
|
decoder_ffn_dim=self.intermediate_size,
|
|
dropout=self.hidden_dropout_prob,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
num_queries=self.num_queries,
|
|
num_labels=self.num_labels,
|
|
use_timm_backbone=False,
|
|
backbone_config=resnet_config,
|
|
backbone=None,
|
|
use_pretrained_backbone=False,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
|
|
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
|
|
return config, inputs_dict
|
|
|
|
def create_and_check_dab_detr_model(self, config, pixel_values, pixel_mask, labels):
|
|
model = DabDetrModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
|
|
result = model(pixel_values)
|
|
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size)
|
|
)
|
|
|
|
def create_and_check_dab_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
|
|
model = DabDetrForObjectDetection(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
|
|
result = model(pixel_values)
|
|
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
|
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
|
|
|
|
result = model(pixel_values=pixel_values, labels=labels)
|
|
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels))
|
|
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
|
|
|
|
|
|
@require_torch
|
|
class DabDetrModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (DabDetrModel, DabDetrForObjectDetection) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-feature-extraction": DabDetrModel,
|
|
"object-detection": DabDetrForObjectDetection,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
is_encoder_decoder = True
|
|
test_torchscript = False
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_missing_keys = False
|
|
zero_init_hidden_state = True
|
|
test_torch_exportable = True
|
|
|
|
# special case for head models
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
|
|
if return_labels:
|
|
if model_class.__name__ in ["DabDetrForObjectDetection"]:
|
|
labels = []
|
|
for i in range(self.model_tester.batch_size):
|
|
target = {}
|
|
target["class_labels"] = torch.ones(
|
|
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
|
|
)
|
|
target["boxes"] = torch.ones(
|
|
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
|
|
)
|
|
target["masks"] = torch.ones(
|
|
self.model_tester.n_targets,
|
|
self.model_tester.min_size,
|
|
self.model_tester.max_size,
|
|
device=torch_device,
|
|
dtype=torch.float,
|
|
)
|
|
labels.append(target)
|
|
inputs_dict["labels"] = labels
|
|
|
|
return inputs_dict
|
|
|
|
def setUp(self):
|
|
self.model_tester = DabDetrModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=DabDetrConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_dab_detr_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_dab_detr_model(*config_and_inputs)
|
|
|
|
def test_dab_detr_object_detection_head_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_dab_detr_object_detection_head_model(*config_and_inputs)
|
|
|
|
# TODO: check if this works again for PyTorch 2.x.y
|
|
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR does not use inputs_embeds")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR does not use inputs_embeds")
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR does not have a get_input_embeddings method")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR is not a generative model")
|
|
def test_generate_without_input_ids(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="DETR does not use token embeddings")
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def set_nan_tensor_to_zero(t):
|
|
print(t)
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
with torch.no_grad():
|
|
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (list, tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(
|
|
tuple_object.values(), dict_object.values()
|
|
):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
torch.testing.assert_close(
|
|
set_nan_tensor_to_zero(tuple_object),
|
|
set_nan_tensor_to_zero(dict_object),
|
|
atol=1e-5,
|
|
rtol=1e-5,
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
if self.has_attentions:
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(
|
|
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
|
|
)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
if hasattr(self.model_tester, "encoder_seq_length"):
|
|
seq_length = self.model_tester.encoder_seq_length
|
|
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
|
|
seq_length = seq_length * self.model_tester.chunk_length
|
|
else:
|
|
seq_length = self.model_tester.seq_length
|
|
|
|
self.assertListEqual(
|
|
[hidden_states[0].shape[1], hidden_states[0].shape[2]],
|
|
[seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
if config.is_encoder_decoder:
|
|
hidden_states = outputs.decoder_hidden_states
|
|
|
|
self.assertIsInstance(hidden_states, (list, tuple))
|
|
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
seq_len = getattr(self.model_tester, "seq_length", None)
|
|
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
|
|
|
|
self.assertListEqual(
|
|
[hidden_states[0].shape[1], hidden_states[0].shape[2]],
|
|
[decoder_seq_length, self.model_tester.hidden_size],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# Had to modify the threshold to 2 decimals instead of 3 because sometimes it threw an error
|
|
def test_batching_equivalence(self):
|
|
"""
|
|
Tests that the model supports batching and that the output is the nearly the same for the same input in
|
|
different batch sizes.
|
|
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
|
|
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
|
|
"""
|
|
|
|
def get_tensor_equivalence_function(batched_input):
|
|
# models operating on continuous spaces have higher abs difference than LMs
|
|
# instead, we can rely on cos distance for image/speech models, similar to `diffusers`
|
|
if "input_ids" not in batched_input:
|
|
return lambda tensor1, tensor2: (
|
|
1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
|
|
)
|
|
return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))
|
|
|
|
def recursive_check(batched_object, single_row_object, model_name, key):
|
|
if isinstance(batched_object, (list, tuple)):
|
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
elif isinstance(batched_object, dict):
|
|
for batched_object_value, single_row_object_value in zip(
|
|
batched_object.values(), single_row_object.values()
|
|
):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
|
|
return
|
|
elif batched_object.dim() == 0:
|
|
return
|
|
else:
|
|
# indexing the first element does not always work
|
|
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
|
|
slice_ids = [slice(0, index) for index in single_row_object.shape]
|
|
batched_row = batched_object[slice_ids]
|
|
self.assertFalse(
|
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertTrue(
|
|
(equivalence(batched_row, single_row_object)) <= 1e-02,
|
|
msg=(
|
|
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
|
|
f"Difference={equivalence(batched_row, single_row_object)}."
|
|
),
|
|
)
|
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
|
|
equivalence = get_tensor_equivalence_function(batched_input)
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
|
|
model_name = model_class.__name__
|
|
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
|
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
batch_size = self.model_tester.batch_size
|
|
single_row_input = {}
|
|
for key, value in batched_input_prepared.items():
|
|
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
|
|
# e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
|
|
single_batch_shape = value.shape[0] // batch_size
|
|
single_row_input[key] = value[:single_batch_shape]
|
|
else:
|
|
single_row_input[key] = value
|
|
|
|
with torch.no_grad():
|
|
model_batched_output = model(**batched_input_prepared)
|
|
model_row_output = model(**single_row_input)
|
|
|
|
if isinstance(model_batched_output, torch.Tensor):
|
|
model_batched_output = {"model_output": model_batched_output}
|
|
model_row_output = {"model_output": model_row_output}
|
|
|
|
for key in model_batched_output:
|
|
# DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
|
|
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
|
|
model_batched_output[key] = model_batched_output[key][1:]
|
|
model_row_output[key] = model_row_output[key][1:]
|
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
decoder_seq_length = self.model_tester.decoder_seq_length
|
|
encoder_seq_length = self.model_tester.encoder_seq_length
|
|
decoder_key_length = self.model_tester.decoder_seq_length
|
|
encoder_key_length = self.model_tester.encoder_seq_length
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_attentions = True
|
|
config.output_hidden_states = False
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
out_len = len(outputs)
|
|
if self.is_encoder_decoder:
|
|
correct_outlen = 6
|
|
|
|
# loss is at first position
|
|
if "labels" in inputs_dict:
|
|
correct_outlen += 1 # loss is added to beginning
|
|
if "past_key_values" in outputs:
|
|
correct_outlen += 1 # past_key_values have been returned
|
|
|
|
self.assertEqual(out_len, correct_outlen)
|
|
|
|
# decoder attentions
|
|
decoder_attentions = outputs.decoder_attentions
|
|
self.assertIsInstance(decoder_attentions, (list, tuple))
|
|
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(decoder_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
|
|
)
|
|
|
|
# cross attentions
|
|
cross_attentions = outputs.cross_attentions
|
|
self.assertIsInstance(cross_attentions, (list, tuple))
|
|
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(cross_attentions[0].shape[-3:]),
|
|
[
|
|
self.model_tester.num_attention_heads,
|
|
decoder_seq_length,
|
|
encoder_key_length,
|
|
],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if hasattr(self.model_tester, "num_hidden_states_types"):
|
|
added_hidden_states = self.model_tester.num_hidden_states_types
|
|
elif self.is_encoder_decoder:
|
|
# decoder_hidden_states, encoder_last_hidden_state, encoder_hidden_states
|
|
added_hidden_states = 3
|
|
else:
|
|
added_hidden_states = 1
|
|
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
|
|
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
self.assertListEqual(
|
|
list(self_attentions[0].shape[-3:]),
|
|
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
|
|
)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# no need to test all models as different heads yield the same functionality
|
|
model_class = self.all_model_classes[0]
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
outputs = model(**inputs, output_attentions=True, output_hidden_states=True)
|
|
|
|
# logits
|
|
output = outputs[0]
|
|
|
|
encoder_hidden_states = outputs.encoder_hidden_states[0]
|
|
encoder_hidden_states.retain_grad()
|
|
|
|
encoder_attentions = outputs.encoder_attentions[0]
|
|
encoder_attentions.retain_grad()
|
|
|
|
decoder_attentions = outputs.decoder_attentions[0]
|
|
decoder_attentions.retain_grad()
|
|
|
|
cross_attentions = outputs.cross_attentions[0]
|
|
cross_attentions.retain_grad()
|
|
|
|
output.flatten()[0].backward(retain_graph=True)
|
|
|
|
self.assertIsNotNone(encoder_hidden_states.grad)
|
|
self.assertIsNotNone(encoder_attentions.grad)
|
|
self.assertIsNotNone(decoder_attentions.grad)
|
|
self.assertIsNotNone(cross_attentions.grad)
|
|
|
|
def test_forward_auxiliary_loss(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.auxiliary_loss = True
|
|
|
|
# only test for object detection and segmentation model
|
|
for model_class in self.all_model_classes[1:]:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
|
|
outputs = model(**inputs)
|
|
|
|
self.assertIsNotNone(outputs.auxiliary_outputs)
|
|
self.assertEqual(len(outputs.auxiliary_outputs), self.model_tester.num_hidden_layers - 1)
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
self.skipTest(reason="ModelTester is not configured to run training tests")
|
|
|
|
# We only have loss with ObjectDetection
|
|
model_class = self.all_model_classes[-1]
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
if model.config.is_encoder_decoder:
|
|
expected_arg_names = ["pixel_values", "pixel_mask"]
|
|
expected_arg_names.extend(
|
|
["head_mask", "decoder_head_mask", "encoder_outputs"]
|
|
if "head_mask" and "decoder_head_mask" in arg_names
|
|
else []
|
|
)
|
|
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
|
|
else:
|
|
expected_arg_names = ["pixel_values", "pixel_mask"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_different_timm_backbone(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# let's pick a random timm backbone
|
|
config.backbone = "tf_mobilenetv3_small_075"
|
|
config.backbone_config = None
|
|
config.use_timm_backbone = True
|
|
config.backbone_kwargs = {"out_indices": [2, 3, 4]}
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
if model_class.__name__ == "DabDetrForObjectDetection":
|
|
expected_shape = (
|
|
self.model_tester.batch_size,
|
|
self.model_tester.num_queries,
|
|
self.model_tester.num_labels,
|
|
)
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
# Confirm out_indices was propagated to backbone
|
|
self.assertEqual(len(model.model.backbone.conv_encoder.intermediate_channel_sizes), 3)
|
|
else:
|
|
# Confirm out_indices was propagated to backbone
|
|
self.assertEqual(len(model.backbone.conv_encoder.intermediate_channel_sizes), 3)
|
|
|
|
self.assertTrue(outputs)
|
|
|
|
def test_initialization(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
configs_no_init.init_xavier_std = 1e9
|
|
# Copied from RT-DETR
|
|
configs_no_init.initializer_bias_prior_prob = 0.2
|
|
bias_value = -1.3863 # log_e ((1 - 0.2) / 0.2)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
if "bbox_attention" in name and "bias" not in name:
|
|
self.assertLess(
|
|
100000,
|
|
abs(param.data.max().item()),
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
# Modified from RT-DETR
|
|
elif "class_embed" in name and "bias" in name:
|
|
bias_tensor = torch.full_like(param.data, bias_value)
|
|
torch.testing.assert_close(
|
|
param.data,
|
|
bias_tensor,
|
|
atol=1e-4,
|
|
rtol=1e-4,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
elif "activation_fn" in name and config.activation_function == "prelu":
|
|
self.assertTrue(
|
|
param.data.mean() == 0.25,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
elif "backbone.conv_encoder.model" in name:
|
|
continue
|
|
elif "self_attn.in_proj_weight" in name:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e2).round() / 1e2).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
|
|
TOLERANCE = 1e-4
|
|
CHECKPOINT = "IDEA-Research/dab-detr-resnet-50"
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_timm
|
|
@require_vision
|
|
@slow
|
|
class DabDetrModelIntegrationTests(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return ConditionalDetrImageProcessor.from_pretrained(CHECKPOINT) if is_vision_available() else None
|
|
|
|
def test_inference_no_head(self):
|
|
model = DabDetrModel.from_pretrained(CHECKPOINT).to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values=encoding.pixel_values)
|
|
|
|
expected_shape = torch.Size((1, 300, 256))
|
|
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
|
|
expected_slice = torch.tensor(
|
|
[[-0.4879, -0.2594, 0.4524], [-0.4997, -0.4258, 0.4329], [-0.8220, -0.4996, 0.0577]]
|
|
).to(torch_device)
|
|
torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=2e-4, rtol=2e-4)
|
|
|
|
def test_inference_object_detection_head(self):
|
|
model = DabDetrForObjectDetection.from_pretrained(CHECKPOINT).to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
encoding = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
pixel_values = encoding["pixel_values"].to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = model(pixel_values)
|
|
|
|
# verify logits + box predictions
|
|
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels))
|
|
self.assertEqual(outputs.logits.shape, expected_shape_logits)
|
|
expected_slice_logits = torch.tensor(
|
|
[[-10.1765, -5.5243, -8.9324], [-9.8138, -5.6721, -7.5161], [-10.3054, -5.6081, -8.5931]]
|
|
).to(torch_device)
|
|
torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice_logits, atol=3e-4, rtol=3e-4)
|
|
|
|
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
|
|
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
|
|
expected_slice_boxes = torch.tensor(
|
|
[[0.3708, 0.3000, 0.2753], [0.5211, 0.6125, 0.9495], [0.2897, 0.6730, 0.5459]]
|
|
).to(torch_device)
|
|
torch.testing.assert_close(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4, rtol=1e-4)
|
|
|
|
# verify postprocessing
|
|
results = image_processor.post_process_object_detection(
|
|
outputs, threshold=0.3, target_sizes=[image.size[::-1]]
|
|
)[0]
|
|
expected_scores = torch.tensor([0.8732, 0.8563, 0.8554, 0.6079, 0.5896]).to(torch_device)
|
|
expected_labels = [17, 75, 17, 75, 63]
|
|
expected_boxes = torch.tensor([14.6970, 49.3892, 320.5165, 469.2765]).to(torch_device)
|
|
|
|
self.assertEqual(len(results["scores"]), 5)
|
|
torch.testing.assert_close(results["scores"], expected_scores, atol=1e-4, rtol=1e-4)
|
|
self.assertSequenceEqual(results["labels"].tolist(), expected_labels)
|
|
torch.testing.assert_close(results["boxes"][0, :], expected_boxes, atol=1e-4, rtol=1e-4)
|