transformers/tests/models/ctrl/test_tokenization_ctrl.py
cyyever 1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00

72 lines
2.8 KiB
Python

# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from functools import lru_cache
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin, use_cache_if_possible
class CTRLTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "Salesforce/ctrl"
tokenizer_class = CTRLTokenizer
test_rust_tokenizer = False
test_seq2seq = False
@classmethod
def setUpClass(cls):
super().setUpClass()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""]
cls.special_tokens_map = {"unk_token": "<unk>"}
cls.vocab_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
cls.merges_file = os.path.join(cls.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(cls.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(cls.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
@classmethod
@use_cache_if_possible
@lru_cache(maxsize=64)
def get_tokenizer(cls, pretrained_name=None, **kwargs):
kwargs.update(cls.special_tokens_map)
pretrained_name = pretrained_name or cls.tmpdirname
return CTRLTokenizer.from_pretrained(pretrained_name, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "adapt react readapt apt"
output_text = "adapt react readapt apt"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "adapt react readapt apt"
bpe_tokens = "adapt re@@ a@@ c@@ t re@@ adapt apt".split()
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)