transformers/tests/models/clvp/test_processor_clvp.py
Susnato Dhar 7e9f10ac94
Add CLVP (#24745)
* init commit

* attention arch done except rotary emb

* rotary emb done

* text encoder working

* outputs matching

* arch first pass done

* make commands done, tests and docs remaining

* all tests passed, only docs remaining

* docs done

* doc-builder fix

* convert script removed(not relevant)

* minor comments done

* added ckpt conversion script

* tokenizer done

* very minor fix of index.md 2

* mostly make fixup related

* all done except fe and rotary emb

* very small change

* removed unidecode dependency

* style changes

* tokenizer removed require_backends

* added require_inflect to tokenizer tests

* removed VOCAB_FILES in tokenizer test

* inflect dependency removed

* added rotary pos emb cache and simplified the apply method

* style

* little doc change

* more comments

* feature extractor added

* added processor

* auto-regressive config added

* added CLVPConditioningEncoder

* comments done except the test one

* weights added successfull(NOT tested)

* tokenizer fix with numbers

* generate outputs matching

* almost tests passing Integ tests not written

* Integ tests added

* major CUDA error fixed

* docs done

* rebase and multiple fixes

* fixed rebase overwrites

* generate code simplified and tests for AutoRegressive model added

* minor changes

* refectored gpt2 code in clvp file

* weights done and all code refactored

* mostly done except the fast_tokenizer

* doc test fix

* config file's doc fixes

* more config fix

* more comments

* tokenizer comments mostly done

* modeling file mostly refactored and can load modules

* ClvpEncoder tested

* ClvpDecoder, ClvpModel and ClvpForCausalLM tested

* integration and all tests passed

* more fixes

* docs almost done

* ckpt conversion refectored

* style and some failing tests fix

* comments

* temporary output fix but test_assisted_decoding_matches_greedy_search test fails

* majority changes done

* use_cache outputs same now! Along with the asisted_greedy_decoding test fix

* more comments

* more comments

* prepare_inputs_for_generation fixed and _prepare_model_inputs added

* style fix

* clvp.md change

* moved clvpconditionalencoder norms

* add model to new index

* added tokenizer input_ids_with_special_tokens

* small fix

* config mostly done

* added config-tester and changed conversion script

* more comments

* comments

* style fix

* some comments

* tokenizer changed back to prev state

* small commnets

* added output hidden states for the main model

* style fix

* comments

* small change

* revert small change

* .

* Update clvp.md

* Update test_modeling_clvp.py

* :)

* some minor change

* new fixes

* remove to_dict from FE
2023-11-10 13:49:10 +00:00

137 lines
5.8 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import shutil
import tempfile
import unittest
from transformers import ClvpFeatureExtractor, ClvpProcessor, ClvpTokenizer
from transformers.testing_utils import require_torch
from .test_feature_extraction_clvp import floats_list
@require_torch
class ClvpProcessorTest(unittest.TestCase):
def setUp(self):
self.checkpoint = "susnato/clvp_dev"
self.tmpdirname = tempfile.mkdtemp()
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmpdirname)
gc.collect()
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.get_tokenizer with Whisper->Clvp
def get_tokenizer(self, **kwargs):
return ClvpTokenizer.from_pretrained(self.checkpoint, **kwargs)
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.get_feature_extractor with Whisper->Clvp
def get_feature_extractor(self, **kwargs):
return ClvpFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_save_load_pretrained_default with Whisper->Clvp
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = ClvpProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, ClvpTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClvpFeatureExtractor)
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_feature_extractor with Whisper->Clvp,processor(raw_speech->processor(raw_speech=raw_speech
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(raw_speech=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_tokenizer with Whisper->Clvp
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_tokenizer_decode with Whisper->Clvp
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_save_load_pretrained_additional_features(self):
processor = ClvpProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(pad_token="(PAD)")
feature_extractor_add_kwargs = self.get_feature_extractor(sampling_rate=16000)
processor = ClvpProcessor.from_pretrained(
self.tmpdirname,
pad_token="(PAD)",
sampling_rate=16000,
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, ClvpTokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClvpFeatureExtractor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
sorted(processor.model_input_names),
sorted(set(feature_extractor.model_input_names + tokenizer.model_input_names)),
msg="`processor` and `feature_extractor` model input names do not match",
)