mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* init commit * attention arch done except rotary emb * rotary emb done * text encoder working * outputs matching * arch first pass done * make commands done, tests and docs remaining * all tests passed, only docs remaining * docs done * doc-builder fix * convert script removed(not relevant) * minor comments done * added ckpt conversion script * tokenizer done * very minor fix of index.md 2 * mostly make fixup related * all done except fe and rotary emb * very small change * removed unidecode dependency * style changes * tokenizer removed require_backends * added require_inflect to tokenizer tests * removed VOCAB_FILES in tokenizer test * inflect dependency removed * added rotary pos emb cache and simplified the apply method * style * little doc change * more comments * feature extractor added * added processor * auto-regressive config added * added CLVPConditioningEncoder * comments done except the test one * weights added successfull(NOT tested) * tokenizer fix with numbers * generate outputs matching * almost tests passing Integ tests not written * Integ tests added * major CUDA error fixed * docs done * rebase and multiple fixes * fixed rebase overwrites * generate code simplified and tests for AutoRegressive model added * minor changes * refectored gpt2 code in clvp file * weights done and all code refactored * mostly done except the fast_tokenizer * doc test fix * config file's doc fixes * more config fix * more comments * tokenizer comments mostly done * modeling file mostly refactored and can load modules * ClvpEncoder tested * ClvpDecoder, ClvpModel and ClvpForCausalLM tested * integration and all tests passed * more fixes * docs almost done * ckpt conversion refectored * style and some failing tests fix * comments * temporary output fix but test_assisted_decoding_matches_greedy_search test fails * majority changes done * use_cache outputs same now! Along with the asisted_greedy_decoding test fix * more comments * more comments * prepare_inputs_for_generation fixed and _prepare_model_inputs added * style fix * clvp.md change * moved clvpconditionalencoder norms * add model to new index * added tokenizer input_ids_with_special_tokens * small fix * config mostly done * added config-tester and changed conversion script * more comments * comments * style fix * some comments * tokenizer changed back to prev state * small commnets * added output hidden states for the main model * style fix * comments * small change * revert small change * . * Update clvp.md * Update test_modeling_clvp.py * :) * some minor change * new fixes * remove to_dict from FE
137 lines
5.8 KiB
Python
137 lines
5.8 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import gc
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import ClvpFeatureExtractor, ClvpProcessor, ClvpTokenizer
|
|
from transformers.testing_utils import require_torch
|
|
|
|
from .test_feature_extraction_clvp import floats_list
|
|
|
|
|
|
@require_torch
|
|
class ClvpProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.checkpoint = "susnato/clvp_dev"
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmpdirname)
|
|
gc.collect()
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.get_tokenizer with Whisper->Clvp
|
|
def get_tokenizer(self, **kwargs):
|
|
return ClvpTokenizer.from_pretrained(self.checkpoint, **kwargs)
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.get_feature_extractor with Whisper->Clvp
|
|
def get_feature_extractor(self, **kwargs):
|
|
return ClvpFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_save_load_pretrained_default with Whisper->Clvp
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
|
|
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = ClvpProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, ClvpTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, ClvpFeatureExtractor)
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_feature_extractor with Whisper->Clvp,processor(raw_speech->processor(raw_speech=raw_speech
|
|
def test_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
|
|
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
|
|
input_processor = processor(raw_speech=raw_speech, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_tokenizer with Whisper->Clvp
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
# Copied from transformers.tests.models.whisper.test_processor_whisper.WhisperProcessorTest.test_tokenizer_decode with Whisper->Clvp
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = ClvpProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(pad_token="(PAD)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(sampling_rate=16000)
|
|
|
|
processor = ClvpProcessor.from_pretrained(
|
|
self.tmpdirname,
|
|
pad_token="(PAD)",
|
|
sampling_rate=16000,
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, ClvpTokenizer)
|
|
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, ClvpFeatureExtractor)
|
|
|
|
def test_model_input_names(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = ClvpProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
self.assertListEqual(
|
|
sorted(processor.model_input_names),
|
|
sorted(set(feature_extractor.model_input_names + tokenizer.model_input_names)),
|
|
msg="`processor` and `feature_extractor` model input names do not match",
|
|
)
|