mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* Firstly: Better detection of when we're a custom class * Trigger tests * Let's break everything * make fixup * fix mistaken line doubling * Let's try to get rid of it from config classes at least * Let's try to get rid of it from config classes at least * Fixup image processor * no more circular import * Let's go back to setting `_auto_class` again * Let's go back to setting `_auto_class` again * stash commit * Revert the irrelevant changes until we figure out AutoConfig * Change tests since we're breaking expectations * make fixup * do the same for all custom classes * Cleanup for feature extractor tests * Cleanup tokenization tests too * typo * Fix tokenizer tests * make fixup * fix image processor test * make fixup * Remove warning from register_for_auto_class * Stop adding model info to auto map entirely * Remove todo * Remove the other todo * Let's start slapping _auto_class on models why not * Let's start slapping _auto_class on models why not * Make sure the tests know what's up * Make sure the tests know what's up * Completely remove add_model_info_to_* * Start adding _auto_class to models * Start adding _auto_class to models * Add a flaky decorator * Add a flaky decorator and import * stash commit * More message cleanup * make fixup * fix indent * Fix trust_remote_code prompts * make fixup * correct indentation * Reincorporate changes into dynamic_module_utils * Update call to trust_remote_code * make fixup * Fix video processors too * Fix video processors too * Remove is_flaky additions * make fixup
242 lines
11 KiB
Python
242 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
VIDEO_PROCESSOR_MAPPING,
|
|
AutoConfig,
|
|
AutoVideoProcessor,
|
|
LlavaOnevisionConfig,
|
|
LlavaOnevisionVideoProcessor,
|
|
)
|
|
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_torch
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
|
|
|
|
from test_module.custom_configuration import CustomConfig # noqa E402
|
|
from test_module.custom_video_processing import CustomVideoProcessor # noqa E402
|
|
|
|
|
|
@require_torch
|
|
class AutoVideoProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
|
|
|
|
def test_video_processor_from_model_shortcut(self):
|
|
config = AutoVideoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
|
|
self.assertIsInstance(config, LlavaOnevisionVideoProcessor)
|
|
|
|
def test_video_processor_from_local_directory_from_key(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
processor_tmpfile = Path(tmpdirname) / "video_preprocessor_config.json"
|
|
config_tmpfile = Path(tmpdirname) / "config.json"
|
|
json.dump(
|
|
{
|
|
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
|
"processor_class": "LlavaOnevisionProcessor",
|
|
},
|
|
open(processor_tmpfile, "w"),
|
|
)
|
|
json.dump({"model_type": "llava_onevision"}, open(config_tmpfile, "w"))
|
|
|
|
config = AutoVideoProcessor.from_pretrained(tmpdirname)
|
|
self.assertIsInstance(config, LlavaOnevisionVideoProcessor)
|
|
|
|
def test_video_processor_from_local_directory_from_preprocessor_key(self):
|
|
# Ensure we can load the image processor from the feature extractor config
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
|
|
config_tmpfile = Path(tmpdirname) / "config.json"
|
|
json.dump(
|
|
{
|
|
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
|
"processor_class": "LlavaOnevisionProcessor",
|
|
},
|
|
open(processor_tmpfile, "w"),
|
|
)
|
|
json.dump({"model_type": "llava_onevision"}, open(config_tmpfile, "w"))
|
|
|
|
config = AutoVideoProcessor.from_pretrained(tmpdirname)
|
|
self.assertIsInstance(config, LlavaOnevisionVideoProcessor)
|
|
|
|
def test_video_processor_from_local_directory_from_config(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model_config = LlavaOnevisionConfig()
|
|
|
|
# Create a dummy config file with image_proceesor_type
|
|
processor_tmpfile = Path(tmpdirname) / "video_preprocessor_config.json"
|
|
config_tmpfile = Path(tmpdirname) / "config.json"
|
|
json.dump(
|
|
{
|
|
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
|
"processor_class": "LlavaOnevisionProcessor",
|
|
},
|
|
open(processor_tmpfile, "w"),
|
|
)
|
|
json.dump({"model_type": "llava_onevision"}, open(config_tmpfile, "w"))
|
|
|
|
# remove video_processor_type to make sure config.json alone is enough to load image processor locally
|
|
config_dict = AutoVideoProcessor.from_pretrained(tmpdirname).to_dict()
|
|
|
|
config_dict.pop("video_processor_type")
|
|
config = LlavaOnevisionVideoProcessor(**config_dict)
|
|
|
|
# save in new folder
|
|
model_config.save_pretrained(tmpdirname)
|
|
config.save_pretrained(tmpdirname)
|
|
|
|
config = AutoVideoProcessor.from_pretrained(tmpdirname)
|
|
|
|
# make sure private variable is not incorrectly saved
|
|
dict_as_saved = json.loads(config.to_json_string())
|
|
self.assertTrue("_processor_class" not in dict_as_saved)
|
|
|
|
self.assertIsInstance(config, LlavaOnevisionVideoProcessor)
|
|
|
|
def test_video_processor_from_local_file(self):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
processor_tmpfile = Path(tmpdirname) / "video_preprocessor_config.json"
|
|
json.dump(
|
|
{
|
|
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
|
"processor_class": "LlavaOnevisionProcessor",
|
|
},
|
|
open(processor_tmpfile, "w"),
|
|
)
|
|
|
|
config = AutoVideoProcessor.from_pretrained(processor_tmpfile)
|
|
self.assertIsInstance(config, LlavaOnevisionVideoProcessor)
|
|
|
|
def test_repo_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError,
|
|
"llava-hf/llava-doesnt-exist is not a local folder and is not a valid model identifier",
|
|
):
|
|
_ = AutoVideoProcessor.from_pretrained("llava-hf/llava-doesnt-exist")
|
|
|
|
def test_revision_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
|
|
):
|
|
_ = AutoVideoProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
|
|
|
|
def test_video_processor_not_found(self):
|
|
with self.assertRaisesRegex(
|
|
EnvironmentError,
|
|
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
|
|
):
|
|
_ = AutoVideoProcessor.from_pretrained("hf-internal-testing/config-no-model")
|
|
|
|
def test_from_pretrained_dynamic_video_processor(self):
|
|
# If remote code is not set, we will time out when asking whether to load the model.
|
|
with self.assertRaises(ValueError):
|
|
video_processor = AutoVideoProcessor.from_pretrained("hf-internal-testing/test_dynamic_video_processor")
|
|
# If remote code is disabled, we can't load this config.
|
|
with self.assertRaises(ValueError):
|
|
video_processor = AutoVideoProcessor.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_video_processor", trust_remote_code=False
|
|
)
|
|
|
|
video_processor = AutoVideoProcessor.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_video_processor", trust_remote_code=True
|
|
)
|
|
self.assertEqual(video_processor.__class__.__name__, "NewVideoProcessor")
|
|
|
|
# Test the dynamic module is loaded only once.
|
|
reloaded_video_processor = AutoVideoProcessor.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_video_processor", trust_remote_code=True
|
|
)
|
|
self.assertIs(video_processor.__class__, reloaded_video_processor.__class__)
|
|
|
|
# Test image processor can be reloaded.
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
video_processor.save_pretrained(tmp_dir)
|
|
reloaded_video_processor = AutoVideoProcessor.from_pretrained(tmp_dir, trust_remote_code=True)
|
|
self.assertEqual(reloaded_video_processor.__class__.__name__, "NewVideoProcessor")
|
|
|
|
def test_new_video_processor_registration(self):
|
|
try:
|
|
AutoConfig.register("custom", CustomConfig)
|
|
AutoVideoProcessor.register(CustomConfig, CustomVideoProcessor)
|
|
# Trying to register something existing in the Transformers library will raise an error
|
|
with self.assertRaises(ValueError):
|
|
AutoVideoProcessor.register(LlavaOnevisionConfig, LlavaOnevisionVideoProcessor)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
processor_tmpfile = Path(tmpdirname) / "video_preprocessor_config.json"
|
|
config_tmpfile = Path(tmpdirname) / "config.json"
|
|
json.dump(
|
|
{
|
|
"video_processor_type": "LlavaOnevisionVideoProcessor",
|
|
"processor_class": "LlavaOnevisionProcessor",
|
|
},
|
|
open(processor_tmpfile, "w"),
|
|
)
|
|
json.dump({"model_type": "llava_onevision"}, open(config_tmpfile, "w"))
|
|
|
|
video_processor = CustomVideoProcessor.from_pretrained(tmpdirname)
|
|
|
|
# Now that the config is registered, it can be used as any other config with the auto-API
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
video_processor.save_pretrained(tmp_dir)
|
|
new_video_processor = AutoVideoProcessor.from_pretrained(tmp_dir)
|
|
self.assertIsInstance(new_video_processor, CustomVideoProcessor)
|
|
|
|
finally:
|
|
if "custom" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["custom"]
|
|
if CustomConfig in VIDEO_PROCESSOR_MAPPING._extra_content:
|
|
del VIDEO_PROCESSOR_MAPPING._extra_content[CustomConfig]
|
|
|
|
def test_from_pretrained_dynamic_video_processor_conflict(self):
|
|
class NewVideoProcessor(LlavaOnevisionVideoProcessor):
|
|
is_local = True
|
|
|
|
try:
|
|
AutoConfig.register("custom", CustomConfig)
|
|
AutoVideoProcessor.register(CustomConfig, NewVideoProcessor)
|
|
# If remote code is not set, the default is to use local
|
|
video_processor = AutoVideoProcessor.from_pretrained("hf-internal-testing/test_dynamic_video_processor")
|
|
self.assertEqual(video_processor.__class__.__name__, "NewVideoProcessor")
|
|
self.assertTrue(video_processor.is_local)
|
|
|
|
# If remote code is disabled, we load the local one.
|
|
video_processor = AutoVideoProcessor.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_video_processor", trust_remote_code=False
|
|
)
|
|
self.assertEqual(video_processor.__class__.__name__, "NewVideoProcessor")
|
|
self.assertTrue(video_processor.is_local)
|
|
|
|
# If remote is enabled, we load from the Hub
|
|
video_processor = AutoVideoProcessor.from_pretrained(
|
|
"hf-internal-testing/test_dynamic_video_processor", trust_remote_code=True
|
|
)
|
|
self.assertEqual(video_processor.__class__.__name__, "NewVideoProcessor")
|
|
self.assertTrue(not hasattr(video_processor, "is_local"))
|
|
|
|
finally:
|
|
if "custom" in CONFIG_MAPPING._extra_content:
|
|
del CONFIG_MAPPING._extra_content["custom"]
|
|
if CustomConfig in VIDEO_PROCESSOR_MAPPING._extra_content:
|
|
del VIDEO_PROCESSOR_MAPPING._extra_content[CustomConfig]
|