transformers/tests/models/auto/test_image_processing_auto.py
Matt ba6d72226d
🚨 🚨 Fix custom code saving (#37716)
* Firstly: Better detection of when we're a custom class

* Trigger tests

* Let's break everything

* make fixup

* fix mistaken line doubling

* Let's try to get rid of it from config classes at least

* Let's try to get rid of it from config classes at least

* Fixup image processor

* no more circular import

* Let's go back to setting `_auto_class` again

* Let's go back to setting `_auto_class` again

* stash commit

* Revert the irrelevant changes until we figure out AutoConfig

* Change tests since we're breaking expectations

* make fixup

* do the same for all custom classes

* Cleanup for feature extractor tests

* Cleanup tokenization tests too

* typo

* Fix tokenizer tests

* make fixup

* fix image processor test

* make fixup

* Remove warning from register_for_auto_class

* Stop adding model info to auto map entirely

* Remove todo

* Remove the other todo

* Let's start slapping _auto_class on models why not

* Let's start slapping _auto_class on models why not

* Make sure the tests know what's up

* Make sure the tests know what's up

* Completely remove add_model_info_to_*

* Start adding _auto_class to models

* Start adding _auto_class to models

* Add a flaky decorator

* Add a flaky decorator and import

* stash commit

* More message cleanup

* make fixup

* fix indent

* Fix trust_remote_code prompts

* make fixup

* correct indentation

* Reincorporate changes into dynamic_module_utils

* Update call to trust_remote_code

* make fixup

* Fix video processors too

* Fix video processors too

* Remove is_flaky additions

* make fixup
2025-05-26 17:37:30 +01:00

268 lines
12 KiB
Python

# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
ViTImageProcessor,
ViTImageProcessorFast,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_torchvision, require_vision
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class AutoImageProcessorTest(unittest.TestCase):
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_image_processor_from_model_shortcut(self):
config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_key(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_feature_extractor_key(self):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_new_filename(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = CLIPConfig()
# Create a dummy config file with image_proceesor_type
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict()
config_dict.pop("image_processor_type")
config = CLIPImageProcessor(**config_dict)
# save in new folder
model_config.save_pretrained(tmpdirname)
config.save_pretrained(tmpdirname)
config = AutoImageProcessor.from_pretrained(tmpdirname)
# make sure private variable is not incorrectly saved
dict_as_saved = json.loads(config.to_json_string())
self.assertTrue("_processor_class" not in dict_as_saved)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_file(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
config = AutoImageProcessor.from_pretrained(processor_tmpfile)
self.assertIsInstance(config, CLIPImageProcessor)
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "clip-base is not a local folder and is not a valid model identifier"
):
_ = AutoImageProcessor.from_pretrained("clip-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_image_processor_not_found(self):
with self.assertRaisesRegex(
EnvironmentError,
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
):
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model")
@require_vision
@require_torchvision
def test_use_fast_selection(self):
checkpoint = "hf-internal-testing/tiny-random-vit"
# TODO: @yoni, change in v4.48 (when use_fast set to True by default)
# Slow image processor is selected by default
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
self.assertIsInstance(image_processor, ViTImageProcessor)
# Fast image processor is selected when use_fast=True
image_processor = AutoImageProcessor.from_pretrained(checkpoint, use_fast=True)
self.assertIsInstance(image_processor, ViTImageProcessorFast)
# Slow image processor is selected when use_fast=False
image_processor = AutoImageProcessor.from_pretrained(checkpoint, use_fast=False)
self.assertIsInstance(image_processor, ViTImageProcessor)
def test_from_pretrained_dynamic_image_processor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
# Test the dynamic module is loaded only once.
reloaded_image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertIs(image_processor.__class__, reloaded_image_processor.__class__)
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_processor.py"))) # Assert we saved custom code
self.assertEqual(
reloaded_image_processor.auto_map["AutoImageProcessor"], "image_processor.NewImageProcessor"
)
self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor")
# Test the dynamic module is reloaded if we force it.
reloaded_image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True, force_download=True
)
self.assertIsNot(image_processor.__class__, reloaded_image_processor.__class__)
def test_new_image_processor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, CustomImageProcessor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor)
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
image_processor = CustomImageProcessor.from_pretrained(tmpdirname)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir)
self.assertIsInstance(new_image_processor, CustomImageProcessor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_image_processor_conflict(self):
class NewImageProcessor(CLIPImageProcessor):
is_local = True
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, NewImageProcessor)
# If remote code is not set, the default is to use local
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(not hasattr(image_processor, "is_local"))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]