transformers/utils/print_env.py
Quentin Lhoest 4339bd71ac fix tests
2025-07-02 22:31:38 +02:00

86 lines
2.6 KiB
Python

#!/usr/bin/env python3
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
from transformers import is_torch_hpu_available, is_torch_xpu_available
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
accelerator = "NA"
if torch.cuda.is_available():
accelerator = "CUDA"
elif is_torch_xpu_available():
accelerator = "XPU"
elif is_torch_hpu_available():
accelerator = "HPU"
print("Torch accelerator:", accelerator)
if accelerator == "CUDA":
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
elif accelerator == "XPU":
print("SYCL version:", torch.version.xpu)
print("Number of XPUs available:", torch.xpu.device_count())
elif accelerator == "HPU":
print("HPU version:", torch.__version__.split("+")[-1])
print("Number of HPUs available:", torch.hpu.device_count())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
try:
import torchcodec
versions = torchcodec._core.get_ffmpeg_library_versions()
print("FFmpeg version:", versions["ffmpeg_version"])
except ImportError:
print("FFmpeg version:", None)
except (AttributeError, KeyError):
print("Failed to get FFmpeg version")