* remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric
* fix
* fix
* fix
* push
* fix
* everything works
* fix init
* fix
* special treatment for sepconv1d
* style
* 🙏🏽
* add doc and cleanup
* fix doc
* fix doc again
* fix doc again
* Apply suggestions from code review
* make style
* Proposal that should work
* Remove needless code
* Fix test
* Apply suggestions from code review
* remove xnli_compute_metrics, add load_dataset, load_metric, set_seed,metric.compute,load_metric
* amend README
* removed data_args.task_name and replaced with task_name = "xnli"; use split function to load train and validation dataset separately; remove __post_init__; remove flag --task_name from README.
* removed dict task_to_keys, use str "xnli" instead of variable task_name, change preprocess_function to use examples["premise"], examples["hypothesis"] directly, remove sentence1_key and sentence2_key, change compute_metrics function to cater only to accuracy metric, add condition for train_langauge is None when using dataset.load_dataset()
* removed `torch.distributed.barrier()` and `import torch` as `from_pretrained` is able to do the work; amend README
* <small>tiny typo</small>
* Tokenizers: ability to load from model subfolder
* use subfolder for local files as well
* Uniformize model shortcut name => model id
* from s3 => from huggingface.co
Co-authored-by: Quentin Lhoest <lhoest.q@gmail.com>
* Kill model archive maps
* Fixup
* Also kill model_archive_map for MaskedBertPreTrainedModel
* Unhook config_archive_map
* Tokenizers: align with model id changes
* make style && make quality
* Fix CI
* Created using Colaboratory
* [examples] reorganize files
* remove run_tpu_glue.py as superseded by TPU support in Trainer
* Bugfix: int, not tuple
* move files around