Commit Graph

1459 Commits

Author SHA1 Message Date
geetu040
c54f8045ec put minimax_text_01 in other files 2025-01-24 20:13:31 +05:00
Joao Gante
90b46e983f
Remove old benchmark code (#35730)
* remove traces of the old deprecated benchmarks

* also remove old tf benchmark example, which uses deleted code

* run doc builder
2025-01-21 17:56:43 +00:00
Cyril Vallez
8ac851b0b3
Improve modular documentation (#35737)
* start a nice doc

* keep improving the doc

* Finalize doc

* Update modular_transformers.md

* apply suggestion
2025-01-21 17:53:30 +01:00
Yoni Gozlan
107f9f5127
add Qwen2-VL image processor fast (#35733)
* add qwen2_vl image processor fast

* add device to ImagesKwargs

* remove automatic fix copies

* fix fast_is_faster_than_slow

* remove unnecessary import
2025-01-21 11:49:05 -05:00
eustlb
3df90103b8
move fastspeech to audio models (#35788) 2025-01-21 08:32:09 -08:00
Aritra Roy Gosthipaty
edbabf6b82
[Doc] Adding blog post to model doc for TimmWrapper (#35744)
* adding blog post to model doc

* Update docs/source/en/model_doc/timm_wrapper.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* review suggestions

* review suggestions

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-21 12:32:39 +00:00
NielsRogge
78f5ee0217
Add LlavaImageProcessor (#33191)
* First draft

* Add equivalence test

* Update docstrings

* Add tests

* Use numpy

* Fix tests

* Improve variable names

* Improve docstring

* Add link

* Remove script

* Add copied from

* Address comment

* Add note in docs

* Add docstring, data format

* Improve test

* Add test

* update

* Update src/transformers/models/llava/image_processing_llava.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/llava/image_processing_llava.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* loop once only

---------

Co-authored-by: raushan <raushan@huggingface.co>
Co-authored-by: Raushan Turganbay <raushan.turganbay@alumni.nu.edu.kz>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-21 12:47:04 +01:00
eustlb
5f0f4b1b93
Patch moonshine (#35731)
* udpate expected logits for T4 runners

* update doc

* correct order of the args for better readability

* remove generate wrap

* convert modular
2025-01-20 16:19:29 +01:00
StevenBucaille
abe57b6f17
Add SuperGlue model (#29886)
* Initial commit with template code generated by transformers-cli

* Multiple additions to SuperGlue implementation :

- Added the SuperGlueConfig
- Added the SuperGlueModel and its implementation
- Added basic weight conversion script
- Added new ImageMatchingOutput dataclass

* Few changes for SuperGlue

* Multiple changes :
- Added keypoint detection config to SuperGlueConfig
- Completed convert_superglue_to_pytorch and succesfully run inference

* Reverted unintentional change

* Multiple changes :
 - Added SuperGlue to a bunch of places
 - Divided SuperGlue into SuperGlueForImageMatching and SuperGlueModel
 - Added testing images

* Moved things in init files

* Added docs (to be finished depending on the final implementation)

* Added necessary imports and some doc

* Removed unnecessary import

* Fixed make fix-copies bug and ran it

* Deleted SuperGlueModel
Fixed convert script

* Added SuperGlueImageProcessor

* Changed SuperGlue to support batching pairs of images and modified ImageMatchingOutput in consequences

* Changed convert_superglue_to_hf.py script to experiment different ways of reading an image and seeing its impact on performances

* Added initial tests for SuperGlueImageProcessor

* Added AutoModelForImageMatching in missing places and tests

* Fixed keypoint_detector_output instructions

* Fix style

* Adapted to latest main changes

* Added integration test

* Fixed bugs to pass tests

* Added keypoints returned by keypoint detector in the output of SuperGlue

* Added doc to SuperGlue

* SuperGlue returning all attention and hidden states for a fixed number of keypoints

* Make style

* Changed SuperGlueImageProcessor tests

* Revert "SuperGlue returning all attention and hidden states for a fixed number of keypoints"
Changed tests accordingly

This reverts commit 5b3b669c

* Added back hidden_states and attentions masked outputs with tests

* Renamed ImageMatching occurences into KeypointMatching

* Changed SuperGlueImageProcessor to raise error when batch_size is not even

* Added docs and clarity to hidden state and attention grouping function

* Fixed some code and done refactoring

* Fixed typo in SuperPoint output doc

* Fixed some of the formatting and variable naming problems

* Removed useless function call

* Removed AutoModelForKeypointMatching

* Fixed SuperGlueImageProcessor to only accept paris of images

* Added more fixes to SuperGlueImageProcessor

* Simplified the batching of attention and hidden states

* Simplified stack functions

* Moved attention instructions into class

* Removed unused do_batch_norm argument

* Moved weight initialization to the proper place

* Replaced deepcopy for instantiation

* Fixed small bug

* Changed from stevenbucaille to magic-leap repo

* Renamed London Bridge images to Tower Bridge

* Fixed formatting

* Renamed remaining "london" to "tower"

* Apply suggestions from code review

Small changes in the docs

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Added AutoModelForKeypointMatching

* Changed images used in example

* Several changes to image_processing_superglue and style

* Fixed resample type hint

* Changed SuperGlueImageProcessor and added test case for list of 2 images

* Changed list_of_tuples implementation

* Fix in dummy objects

* Added normalize_keypoint, log_sinkhorn_iterations and log_optimal_transport docstring

* Added missing docstring

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Moved forward block at bottom

* Added docstring to forward method

* Added docstring to match_image_pair method

* Changed test_model_common_attributes to test_model_get_set_embeddings test method signature

* Removed AutoModelForKeypointMatching

* Removed image fixtures and added load_dataset

* Added padding of images in SuperGlueImageProcessor

* Cleaned up convert_superglue_to_hf script

* Added missing docs and fixed unused argument

* Fixed SuperGlueImageProcessor tests

* Transposed all hidden states from SuperGlue to reflect the standard (..., seq_len, feature_dim) shape

* Added SuperGlueForKeypointMatching back to modeling_auto

* Fixed image processor padding test

* Changed SuperGlue docs

* changes:
 - Abstraction to batch, concat and stack of inconsistent tensors
 - Changed conv1d's to linears to match standard attention implementations
 - Renamed all tensors to be tensor0 and not tensor_0 and be consistent
 - Changed match image pair to run keypoint detection on all image first, create batching tensors and then filling these tensors matches after matches
 - Various changes in docs, etc

* Changes to SuperGlueImageProcessor:
- Reworked the input image pairs checking function and added tests accordingly
- Added Copied from statements
- Added do_grayscale tag (also for SuperPointImageProcessor)
- Misc changes for better code

* Formatting changes

* Reverted conv1d to linear conversion because of numerical differences

* fix: changed some code to be more straightforward (e.g. filtering keypoints) and converted plot from opencv to matplotlib

* fix: removed unnecessary test

* chore: removed commented code and added back hidden states transpositions

* chore: changed from "inconsistent" to "ragged" function names as suggested

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* docs: applied suggestions

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* docs: updated to display matched output

* chore: applied suggestion for check_image_pairs_input function

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* chore: changed check_image_pairs_input function name to validate_and_format_image_pairs and used validate_preprocess_arguments function

* tests: simplified tests for image input format and shapes

* feat: converted SuperGlue's use of Conv1d with kernel_size of 1 with Linear layers. Changed tests and conversion script accordingly

* feat: several changes to address comments

Conversion script:
- Reverted fuse batchnorm to linear conversion
- Changed all 'nn.Module' to respective SuperGlue models
- Changed conversion script to use regex mapping and match other recent scripts

Modeling SuperGlue:
- Added batching with mask and padding to attention
- Removed unnecessary concat, stack and batch ragged pairs functions
- Reverted batchnorm layer
- Renamed query, key, value and merge layers into q, k, v, out proj
- Removed Union of different Module into nn.Module in _init_weights method typehint
- Changed several method's signature to combine image0 and image1 inputs with appropriate doc changes
- Updated SuperGlue's doc with torch.no_grad()

Updated test to reflect changes in SuperGlue model

* refactor: changed validate_and_format_image_pairs function with clarity

* refactor: changed from one SuperGlueMLP class to a list of SuperGlueMLP class

* fix: fixed forgotten init weight change from last commit

* fix: fixed rebase mistake

* fix: removed leftover commented code

* fix: added typehint and changed some of arguments default values

* fix: fixed attribute default values for SuperGlueConfig

* feat: added SuperGlueImageProcessor post process keypoint matching method with tests

* fix: fixed SuperGlue attention and hidden state tuples aggregation

* chore: fixed mask optionality and reordered tensor reshapes to be cleaner

* chore: fixed docs and error message returned in validate_and_format_image_pairs function

* fix: fixed returned keypoints to be the ones that SuperPoint returns

* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue

* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue (bis)

* fix: Changed SuperGlueMultiLayerPerceptron instantiation to avoid if statement

* fix: Changed convert_superglue_to_hf script to reflect latest SuperGlue changes and got rid of nn.Modules

* WIP: implement Attention from an existing class (like BERT)

* docs: Changed docs to include more appealing matching plot

* WIP: Implement Attention

* chore: minor typehint change

* chore: changed convert superglue script by removing all classes and apply conv to linear conversion in state dict + rearrange keys to comply with changes in model's layers organisation

* Revert "Fixed typo in SuperPoint output doc"

This reverts commit 2120390e82.

* chore: added comments in SuperGlueImageProcessor

* chore: changed SuperGlue organization HF repo to magic-leap-community

* [run-slow] refactor: small change in layer instantiation

* [run-slow] chore: replaced remaining stevenbucaille org to magic-leap-community

* [run-slow] chore: make style

* chore: update image matching fixture dataset HF repository

* [run-slow] superglue

* tests: overwriting test_batching_equivalence

* [run-slow] superglue

* tests: changed test to cope with value changing depending on cuda version

* [run-slow] superglue

* tests: changed matching_threshold value

* [run-slow] superglue

* [run-slow] superglue

* tests: changed tests for integration

* [run-slow] superglue

* fix: Changed tensor view and permutations to match original implementation results

* fix: updated convert script and integration test to include last change in model

* fix: increase tolerance for CUDA variances

* Apply suggestions from code review

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* [run-slow] superglue

* chore: removed blank whitespaces

* [run-slow] superglue

* Revert SuperPoint image processor accident changes

* [run-slow] superglue

* refactor: reverted copy from BERT class

* tests: lower the tolerance in integration tests for SuperGlue

* [run-slow] superglue

* chore: set do_grayscale to False in SuperPoint and SuperGlue image processors

* [run-slow] superglue

* fix: fixed imports in SuperGlue files

* chore: changed do_grayscale SuperGlueImageProcessing default value to True

* docs: added typehint to post_process_keypoint_matching method in SuperGlueImageProcessor

* fix: set matching_threshold default value to 0.0 instead of 0.2

* feat: added matching_threshold to post_process_keypoint_matching method

* docs: update superglue.md to include matching_threshold parameter

* docs: updated SuperGlueConfig docstring for matching_threshold default value

* refactor: removed unnecessary parameters in SuperGlueConfig

* fix: changed from matching_threshold to threshold

* fix: re-revert changes to make SuperGlue attention classes copies of BERT

* [run-slow] superglue

* fix: added missing device argument in post_processing method

* [run-slow] superglue

* fix: add matches different from -1 to compute valid matches in post_process_keypoint_matching (and docstring)

* fix: add device to image_sizes tensor instantiation

* tests: added checks on do_grayscale test

* chore: reordered and added Optional typehint to KeypointMatchingOutput

* LightGluePR suggestions:
- use `post_process_keypoint_matching` as default docs example
- add `post_process_keypoint_matching` in autodoc
- add `SuperPointConfig` import under TYPE_CHECKING condition
- format SuperGlueConfig docstring
- add device in convert_superglue_to_hf
- Fix typo
- Fix KeypointMatchingOutput docstring
- Removed unnecessary line
- Added missing SuperGlueConfig in __init__ methods

* LightGluePR suggestions:
- use batching to get keypoint detection

* refactor: processing images done in 1 for loop instead of 4

* fix: use @ instead of torch.einsum for scores computation

* style: added #fmt skip to long tensor values

* refactor: rollbacked validate_and_format_image_pairs valid and invalid case to more simple ones

* refactor: prepare_imgs

* refactor: simplified `validate_and_format_image_pairs`

* docs: fixed doc

---------

Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-20 10:32:39 +00:00
NielsRogge
872dfbdd46
[ViTPose] Convert more checkpoints (#35638)
* Convert more checkpoints

* Update docs, convert huge variant

* Update model name

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Remove print statements

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Link to collection

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-20 11:29:47 +01:00
Raushan Turganbay
8571bb145a
Fix CI for VLMs (#35690)
* fix some easy test

* more tests

* remove logit check here also

* add require_torch_large_gpu in Emu3
2025-01-20 11:15:39 +01:00
Pavel Iakubovskii
099d93d2e9
Grounding DINO Processor standardization (#34853)
* Add input ids to model output

* Add text preprocessing for processor

* Fix snippet

* Add test for equivalence

* Add type checking guard

* Fixing typehint

* Fix test for added `input_ids` in output

* Add deprecations and "text_labels" to output

* Adjust tests

* Fix test

* Update code examples

* Minor docs and code improvement

* Remove one-liner functions and rename class to CamelCase

* Update docstring

* Fixup
2025-01-17 14:18:16 +00:00
Pavel Iakubovskii
42b2857b01
OmDet Turbo processor standardization (#34937)
* Fix docstring

* Fix docstring

* Add `classes_structure` to model output

* Update omdet postprocessing

* Adjust tests

* Update code example in docs

* Add deprecation to "classes" key in output

* Types, docs

* Fixing test

* Fix missed clip_boxes

* [run-slow] omdet_turbo

* Apply suggestions from code review

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* Make CamelCase class

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-01-17 14:10:19 +00:00
Pavel Iakubovskii
94ae9a8da1
OwlViT/Owlv2 post processing standardization (#34929)
* Refactor owlvit post_process_object_detection + add text_labels

* Fix copies in grounding dino

* Sync with Owlv2 postprocessing

* Add post_process_grounded_object_detection method to processor, deprecate post_process_object_detection

* Add test cases

* Move text_labels to processors only

* [run-slow] owlvit owlv2

* [run-slow] owlvit, owlv2

* Update snippets

* Update docs structure

* Update deprecated objects for check_repo

* Update docstring for post processing of image guided object detection
2025-01-17 13:58:28 +00:00
jiqing-feng
387663e571
Enable gptqmodel (#35012)
* gptqmodel

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update readme

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* gptqmodel need use checkpoint_format (#1)

* gptqmodel need use checkpoint_format

* fix quantize

* Update quantization_config.py

* Update quantization_config.py

* Update quantization_config.py

---------

Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* Revert quantizer_gptq.py (#2)

* revert quantizer_gptq.py change

* pass **kwargs

* limit gptqmodel and optimum version

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix warning

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix version check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* revert unrelated changes

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* enable gptqmodel tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix requires gptq

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Fix Transformer compat (#3)

* revert quantizer_gptq.py change

* pass **kwargs

* add meta info

* cleanup

* cleanup

* Update quantization_config.py

* hf_select_quant_linear pass checkpoint_format and meta

* fix GPTQTestCUDA

* Update test_gptq.py

* gptqmodel.hf_select_quant_linear() now does not select ExllamaV2

* cleanup

* add backend

* cleanup

* cleanup

* no need check exllama version

* Update quantization_config.py

* lower checkpoint_format and backend

* check none

* cleanup

* Update quantization_config.py

* fix self.use_exllama == False

* spell

* fix unittest

* fix unittest

---------

Co-authored-by: LRL <lrl@lbx.dev>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format again

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update gptqmodel version (#6)

* update gptqmodel version

* update gptqmodel version

* fix unit test (#5)

* update gptqmodel version

* update gptqmodel version

* "not self.use_exllama" is not equivalent to "self.use_exllama==False"

* fix unittest

* update gptqmodel version

* backend is loading_attibutes (#7)

* fix format and tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix memory check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix device mismatch

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix result check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update src/transformers/quantizers/quantizer_gptq.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update tests

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* review: update docs (#10)

* review: update docs (#12)

* review: update docs

* fix typo

* update tests for gptqmodel

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* update document (#9)

* update overview.md

* cleanup

* Update overview.md

* Update overview.md

* Update overview.md

* update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

* Update gptq.md

---------

Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>

* typo

* doc note for asymmetric quant

* typo with apple silicon(e)

* typo for marlin

* column name revert: review

* doc rocm support

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/gptq.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/quantization/overview.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: LRL-ModelCloud <165116337+LRL-ModelCloud@users.noreply.github.com>
Co-authored-by: ZX-ModelCloud <zx@modelcloud.ai>
Co-authored-by: Qubitium-ModelCloud <qubitium@modelcloud.ai>
Co-authored-by: ZX-ModelCloud <165115237+ZX-ModelCloud@users.noreply.github.com>
Co-authored-by: LRL <lrl@lbx.dev>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-15 14:22:49 +01:00
Ego Joseph Oborakpororo
b0cdbd9119
Enhanced Installation Section in README.md (#35094)
* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

Enhanced installation section with troubleshooting, GPU setup, and OS-specific details.

* Update README.md

Enhanced installation section with troubleshooting, GPU setup, and OS-specific details.

* Update installation.md

Updated installation.md to include virtual environment and GPU setup instructions.

* Update installation.md

Updated installation.md to include virtual environment and GPU setup instructions.

* Update installation.md

Updated installation.md to include virtual environment, troubleshooting and GPU setup instructions.

* Update installation.md

* Update installation.md

* Update installation.md

* Update installation.md

Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.

* Update installation.md

Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.

* Update installation.md

Updated installation.md to include virtual environment, troubleshooting functions and GPU setup instructions.

* Update README.md

Removed numbering from README.md.

* Update README.md

Removed unnecessary "a)" formatting as per maintainer feedback.

* Update README.md

Added blank lines around code snippets for better readability.

* Update README.md

Removed the line "b) Install a backend framework:" from README.md as per feedback.

* Update README.md

Simplified "For Windows:" to "Windows" in README.md as per feedback as well as "For macOS/Linux:" to "macOS/Linux"

* Update README.md

Removed unnecessary heading and retained valid code snippet.

* Update README.md

Removed unnecessary heading "d) Optional: Install from source for the latest updates" as per feedback.

* Update README.md

Removed "GPU Setup (Optional)" section to align with minimal design feedback.

* Update installation.md

Removed "Create and Activate a Virtual Environment" section from installation.md as per feedback.

* Update installation.md

Adjusted "Troubleshooting" to a second-level heading and added an introductory line as per feedback.

* Update installation.md

Updated troubleshooting section with simplified headings and formatted code blocks as per feedback.

* Update installation.md

Integrated GPU setup instructions into the "Install with pip" section for better content flow.

* Update README.md

Removed Troubleshooting section from README.md for minimalism as per maintainer feedback.
2025-01-14 08:05:08 -08:00
Martin
715fdd6459
Update torchao.md: use auto-compilation (#35490)
* Update torchao.md: use auto-compilation

* Update torchao.md: indicate updating transformers to the latest

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2025-01-14 11:33:48 +01:00
RTrace
34f76bb62b
Fix zero_shot_image_classification documentation guide link in SigLIP (#35671) 2025-01-13 11:08:17 -08:00
Arthur
c23a1c1932
Add-helium (#35669)
* Add the helium model.

* Add a missing helium.

* And add another missing helium.

* Use float for the rmsnorm mul.

* Add the Helium tokenizer converter.

* Add the pad token as suggested by Arthur.

* Update the RMSNorm + some other tweaks.

* Fix more rebase issues.

* fix copies and style

* fixes and add helium.md

* add missing tests

* udpate the backlink

* oups

* style

* update init, and expected results

* small fixes

* match test outputs

* style fixup, fix doc builder

* add dummies and we should be good to go!z

* update sdpa and fa2 documentation

---------

Co-authored-by: laurent <laurent.mazare@gmail.com>
2025-01-13 18:41:15 +01:00
Raushan Turganbay
52e1f87c7d
[WIP] Emu3: add model (#33770)
* model can convert to HF and be loaded back

* nit

* works in single batch generation but hallucinates

* use the image tokens

* add image generation

* now it works

* add tests

* update

* add modulare but it doesn't work for porting docstring :(

* skip some tests

* add slow tests

* modular removed the import?

* guess this works

* update

* update

* fix copies

* fix test

* fix copies

* update

* docs

* fix tests

* last fix tests?

* pls

* repo consistency

* more style

* style

* remove file

* address comments

* tiny bits

* update after the new modular

* fix tests

* add one more cond in check attributes

* decompose down/up/mid blocks

* allow static cache generation in VLMs

* nit

* fix copies

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/model_doc/emu3.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* fix VAE upsampling

* Update src/transformers/models/emu3/modular_emu3.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* address comments

* state overwritten stuff explicitly

* fix copies

* add the flag for flex attn

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-01-10 12:23:00 +01:00
Raushan Turganbay
e0646f3dce
Chat template: return vectorized output in processors (#34275)
* update chat template

* style

* fix tests

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* typehints + docs

* fix tests

* remove unnecessary warnings

* forgot code style :(

* allow users to pass backend and num frames

* Update docs/source/en/chat_templating.md

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/image_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/processing_utils.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* typo fix

* style

* address comments

* align with "pipeline" template

* update docs

* update docs

* unpack for all kwargs?

* wrong conflict resolution while rebasing

* tmp

* update docs

* Update docs/source/en/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/chat_templating.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-10 11:05:29 +01:00
eustlb
5f087d1335
Add Moonshine (#34784)
* config draft

* full encoder forward

* full decoder forward

* fix sdpa and FA2

* fix sdpa and FA2

* moonshine model

* moonshine model forward

* fix attention with past_key_values

* add MoonshineForConditionalGeneration

* fix cache handling and causality for cross attention

* no causal attention mask for the encoder

* model addition (imports etc)

* small nit

* nits

* Update src/transformers/models/moonshine/convert_usefulsensors_to_hf.py

Co-authored-by: Joshua Lochner <admin@xenova.com>

* add rope_theta

* nits

* model doc

* Update src/transformers/models/auto/configuration_auto.py

Co-authored-by: Joshua Lochner <admin@xenova.com>

* imports

* add MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES

* updates modular

* make

* make fix-copies

* ruff check examples fix

* fix check_modular_conversion

* nit

* nits

* nits

* copied from -> imports

* imports fix

* integrate attention refacto

* modular edge case

* remove encoder

* convolutions params in config

* run modular_model_converter

* make

* Update docs/source/en/model_doc/moonshine.md

Co-authored-by: Joshua Lochner <admin@xenova.com>

* MoonshineModelTest

* correct typo

* make style

* integration tests

* make

* modular convert

* name conversion update (up_proj -> fc1 etc)

* update config

* update MLP

* update attention

* update encoder layer

* update decoder layer

* update convolutions parameters

* update encoder

* remove INPUTS_DOCSTRING

* update decoder

* update conditional generation

* update pretrained model

* imports

* modular converted

* update doc

* fix

* typo

* update doc

* update license

* update init

* split config in file

* two classes for MLP

* attention from GLM

* from GlmRotaryEmbedding

* split MLP

* apply arthur's review suggestions

* apply arthur's review suggestions

* apply arthur's review suggestions

* auto feature extractor

* convert modular

* fix + make

* convert modular

* make

* unsplit config

* use correct checkpoint

* wrap generate

* update tests

* typos

* make

* typo

* update doc

---------

Co-authored-by: Joshua Lochner <admin@xenova.com>
2025-01-10 11:00:54 +01:00
Benjamin Warner
1e3ddcb2d0
ModernBERT bug fixes (#35404)
* bug fixes

* organize imports

* wrap cpu warning in reference_compile

* Avoid needing repad_logits_with_grad, always repad with grads when training

I'm not 100% that the conditional with "or labels is None" makes sense though - not sure what the intention is there. Perhaps we can remove that?

* Revert "Avoid needing repad_logits_with_grad, always repad with grads when training"

This reverts commit cedcb4e89b.

* Fix grammar: keep -> keeps

* Propagate grammar fix with modular_model_converter

---------

Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
2025-01-09 20:15:38 +01:00
胡译文
c9c682d19c
[doc] deepspeed universal checkpoint (#35015)
* universal checkpoint

* Update docs/source/en/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/en/deepspeed.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

---------

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-09 09:50:51 -08:00
Pablo Montalvo
395b114bd1
Small fix rope kwargs (#35589)
* don't know why this keeps popping up?

* remove unused rope_kwargs
2025-01-09 15:40:36 +01:00
Merve Noyan
487c31a21f
Minor fix in video text 2 text docs (#35546)
minor fix in docs
2025-01-09 11:20:36 +01:00
Joao Gante
76da6ca034
Pipeline: simple API for assisted generation (#34504)
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-01-08 17:08:02 +00:00
DaNing An
4c2c12b3de
[docs] Remove Hiera from AUDIO MODELS in docs (#35544)
Remove Hiera from AUDIO MODELS

Hiera is a visual model and should not appear in audio model...
2025-01-08 16:33:21 +00:00
NielsRogge
8490d3159c
Add ViTPose (#30530)
* First draft

* Make fixup

* Make forward pass worké

* Improve code

* More improvements

* More improvements

* Make predictions match

* More improvements

* Improve image processor

* Fix model tests

* Add classic decoder

* Convert classic decoder

* Verify image processor

* Fix classic decoder logits

* Clean up

* Add post_process_pose_estimation

* Improve post_process_pose_estimation

* Use AutoBackbone

* Add support for MoE models

* Fix tests, improve num_experts%

* Improve variable names

* Make fixup

* More improvements

* Improve post_process_pose_estimation

* Compute centers and scales

* Improve postprocessing

* More improvements

* Fix ViTPoseBackbone tests

* Add docstrings, fix image processor tests

* Update index

* Use is_cv2_available

* Add model to toctree

* Add cv2 to doc tests

* Remove script

* Improve conversion script

* Add coco_to_pascal_voc

* Add box_to_center_and_scale to image_transforms

* Update tests

* Add integration test

* Fix merge

* Address comments

* Replace numpy by pytorch, improve docstrings

* Remove get_input_embeddings

* Address comments

* Move coco_to_pascal_voc

* Address comment

* Fix style

* Address comments

* Fix test

* Address comment

* Remove udp

* Remove comment

* [WIP] need to check if the numpy function is same as cv

* add scipy affine_transform

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* refactor convert

* add output_shape

* add atol 5e-2

* Use hf_hub_download in conversion script

* make box_to_center more applicable

* skipt test_get_set_embedding

* fix to accept array and fix CI

* add co-contributor

* make it to tensor type output

* add torch

* change to torch tensor

* add more test

* minor change

* CI test change

* import torch should be above ImageProcessor

* make style

* try not use torch in def

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/configuration_vitpose_backbone.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix

* fix

* add caution

* make more detail about dataset_index

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* add docs

* Update docs/source/en/model_doc/vitpose.md

* Update src/transformers/models/vitpose/configuration_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Revert "Update src/transformers/__init__.py"

This reverts commit 7ffa504450.

* change name

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vitpose/test_modeling_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* move vitpose only function to image_processor

* raise valueerror when using timm backbone

* use out_indices

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove camel-case of def flip_back

* rename vitposeEstimatorOutput

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix confused camelcase of MLP

* remove in-place logic

* clear scale description

* make consistent batch format

* docs update

* formatting docstring

* add batch tests

* test docs change

* Update src/transformers/models/vitpose/image_processing_vitpose.py

* Update src/transformers/models/vitpose/configuration_vitpose.py

* chagne ViT to Vit

* change to enable MoE

* make fix-copies

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* extract udp

* add more described docs

* simple fix

* change to accept target_size

* make style

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/configuration_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change to `verify_backbone_config_arguments`

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove unnecessary copy

* make config immutable

* enable gradient checkpointing

* update inappropriate docstring

* linting docs

* split function for visibility

* make style

* check isinstances

* change to acceptable use_pretrained_backbone

* make style

* remove copy in docs

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* simple fix + make style

* change input config of activation function to string

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* tmp docs

* delete index.md

* make fix-copies

* simple fix

* change conversion to sam2/mllama style

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* refactor convert

* add supervision

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* remove reduntant def

* seperate code block for visualization

* add validation for num_moe

* final commit

* add labels

* [run-slow] vitpose, vitpose_backbone

* Update src/transformers/models/vitpose/convert_vitpose_to_hf.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* enable all conversion

* final commit

* [run-slow] vitpose, vitpose_backbone

* ruff check --fix

* [run-slow] vitpose, vitpose_backbone

* rename split module

* [run-slow] vitpose, vitpose_backbone

* fix pos_embed

* Simplify init

* Revert "fix pos_embed"

This reverts commit 2c56a4806e.

* refactor single loop

* allow flag to enable custom model

* efficiency of MoE to not use unused experts

* make style

* Fix range -> arange to avoid warning

* Revert MOE router, a new one does not work

* Fix postprocessing a bit (labels)

* Fix type hint

* Fix docs snippets

* Fix links to checkpoints

* Fix checkpoints in tests

* Fix test

* Add image to docs

---------

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: sangbumchoi <danielsejong55@gmail.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-08 16:02:14 +00:00
Joao Gante
430d3d43a5
[Docs] links to logits-processor-zoo (#35552)
links to logits-processor-zoo
2025-01-08 13:36:30 +00:00
Jade Choghari
7176e06b52
Add TextNet (#34979)
* WIP

* Add config and modeling for Fast model

* Refactor modeling and add tests

* More changes

* WIP

* Add tests

* Add conversion script

* Add conversion scripts, integration tests, image processor

* Fix style and copies

* Add fast model to init

* Add fast model in docs and other places

* Fix import of cv2

* Rename image processing method

* Fix build

* Fix Build

* fix style and fix copies

* Fix build

* Fix build

* Fix Build

* Clean up docstrings

* Fix Build

* Fix Build

* Fix Build

* Fix build

* Add test for image_processing_fast and add documentation tests

* some refactorings

* Fix failing tests

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Introduce TextNet

* Fix failures

* Refactor textnet model

* Fix failures

* Add cv2 to setup

* Fix failures

* Fix failures

* Add CV2 dependency

* Fix bugs

* Fix build issue

* Fix failures

* Remove textnet from modeling fast

* Fix build and other things

* Fix build

* some cleanups

* some cleanups

* Some more cleanups

* Fix build

* Incorporate PR feedbacks

* More cleanup

* More cleanup

* More cleanup

* Fix build

* Remove all the references of fast model

* More cleanup

* Fix build

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix Build

* Fix build

* Fix build

* Fix build

* Fix build

* Fix build

* Incorporate PR feedbacks

* Fix style

* Fix build

* Incorporate PR feedbacks

* Fix image processing mean and std

* Incorporate PR feedbacks

* fix build failure

* Add assertion to image processor

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* fix style failures

* fix build

* Fix Imageclassification's linear layer, also introduce TextNetImageProcessor

* Fix build

* Fix build

* Fix build

* Fix build

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix build

* Incorporate PR feedbacks

* Remove some script

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix image processing in textnet

* Incorporate PR Feedbacks

* Fix CI failures

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Add textnet to readme

* Improve readability

* Incorporate PR feedbacks

* fix code style

* fix key error and convert working

* tvlt shouldn't be here

* fix test modeling test

* Fix tests, make fixup

* Make fixup

* Make fixup

* Remove TEXTNET_PRETRAINED_MODEL_ARCHIVE_LIST

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update tests/models/textnet/test_image_processing_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* space typo

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/configuration_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* make conv layer kernel sizes and strides default to None

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix keyword bug

* add batch init and make fixup

* Make fixup

* Update integration test

* Add figure

* Update textnet.md

* add testing and fix errors (classification, imgprocess)

* fix error check

* make fixup

* make fixup

* revert to original docstring

* add make style

* remove conflict for now

* Update modeling_auto.py

got a confusion in `timm_wrapper` - was giving some conflicts

* Update tests/models/textnet/test_modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update tests/models/textnet/test_modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* add changes

* Update textnet.md

* add doc

* add authors hf ckpt + rename

* add feedback: classifier/docs

---------

Co-authored-by: raghavanone <opensourcemaniacfreak@gmail.com>
Co-authored-by: jadechoghari <jadechoghari@users.noreply.huggingface.co>
Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-08 09:52:51 +01:00
eustlb
7f7677307c
[Qwen2Audio] handle input ids expansion during processing (#35534)
* add audio_token attribute to proc

* expand input_ids

* and legacy and expanded input_ids

* test update

* split lines

* add possibility not to provide eos and bos audio tokens

* raise errors

* test incorrect number of audio tokens

* add example

* fmt

* typo
2025-01-07 16:47:27 +01:00
松本和真
96bf3d6cc5
Add diffllama (#34083)
* first adding diffllama

* add Diff Attention and other but still with errors

* complate make attention Diff-Attention

* fix some bugs which may be caused by transformer-cli while adding model

* fix a bug caused by forgetting KV cache...

* Update src/transformers/models/diffllama/modeling_diffllama.py

You don't need to divide by 2 if we use same number of attention heads as llama. instead you can just split in forward.

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

new codes are more meaningful than before

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

new codes are more meaningful than before

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fix 2times divide by sqrt(self.head_dim)

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fix 2times divide by sqrt(self.head_dim)

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place.
and more visible

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* I found Attention missed implemented from paper still on e072544a3b.

* re-implemented

* adding groupnorm

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* align with transformers code style

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix typo

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* adding groupnorm

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* change SdpaAttention to DiffSdpaAttention

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix bug

* Update src/transformers/models/diffllama/modeling_diffllama.py

resolve "not same outputs" problem

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix bugs of places of "GroupNorm with scale" and etc

* Revert "fix bugs of places of "GroupNorm with scale" and etc"

This reverts commit 26307d92f6.

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* remove missed type

* add diffllama model_doc

* apply make style/quality

* apply review comment about model

* apply review comment about test

* place diffllama alphabetically on the src/transformers/__init__.py

* fix forgot code

* Supports parameters that are not initialized with standard deviation 0 in the conventional method

* add DiffLlamaConfig to CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK on utils/check_config_docstrings.py

* remove unused property of config

* add to supported model list

* add to spda supported model list

* fix copyright, remove pretraining_tensor_parallel, and modify for initialization test

* remove unused import and etc.

* empty commit

* empty commit

* empty commit

* apply modular transformers but with bugs

* revert prev commit

* create src/transformers/model/diffllama/modular_diffllama.py

* run utils/modular_model_converter.py

* empty commit

* leaner modular diffllama

* remove more and more in modular_diffllama.pt

* remove more and more in modular_diffllama.pt

* resolve missing docstring entries

* force reset

* convert modular

---------

Co-authored-by: Minho Ryu <ryumin93@gmail.com>
2025-01-07 11:34:56 +01:00
Jacky Lee
44a26c871c
Update llm_optims docs for sdpa_kernel (#35481)
update: use sdpa_kernel
2025-01-06 08:54:31 -08:00
Yijun Lee
e5fd865eba
Add Gemma2 GGUF support (#34002)
* initial setup for ggml.py

* initial setup of GGUFGemma2Converter class

* Add gemma2 model to gguf.md doc

* Partial work on GGUF_TENSOR_MAPPING

* initial setup of GGUF_TENSOR_MAPPING for Gemma2

* refactor: rename GemmaConvert class to GemmaConverter for naming consistency

* feat: complete gemma2 tensor mapping implementation

* feat: add initial implementation of GGUFGemmaConverter

* feat: complete GGUFGemmaConverter implementation

* feat: add test code for gemma2

* refactor: minor code cleanup

* refactor: minor code cleanup

* fix: resolve suggestions

* Update tests/quantization/ggml/test_ggml.py

Co-authored-by: Isotr0py <2037008807@qq.com>

---------

Co-authored-by: Isotr0py <2037008807@qq.com>
2025-01-03 14:50:07 +01:00
湛露先生
b2b04e86e7
Fix docs typos. (#35465)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-01-02 11:29:46 +01:00
Jacky Lee
b5f97977ed
Update docs for sdpa_kernel (#35410)
update: sdp_kernel -> sdpa_kernel
2024-12-30 09:50:34 -08:00
Martin
90f256c90c
Update perf_infer_gpu_one.md: fix a typo (#35441) 2024-12-29 14:57:08 +01:00
NielsRogge
6e0515e99c
Add DINOv2 with registers (#35348)
* added changes from 32905

* fixed mistakes caused by select all paste

* rename diff_dinov2...

* ran tests

* Fix modular

* Fix tests

* Use new init

* Simplify drop path

* Convert all checkpoints

* Add figure and summary

* Update paths

* Update docs

* Update docs

* Update toctree

* Update docs

---------

Co-authored-by: BernardZach <bernardzach00@gmail.com>
Co-authored-by: Zach Bernard <132859071+BernardZach@users.noreply.github.com>
2024-12-24 13:21:59 +01:00
Andrei Panferov
64c05eecd6
HIGGS Quantization Support (#34997)
* higgs init

* working with crunches

* per-model workspaces

* style

* style 2

* tests and style

* higgs tests passing

* protecting torch import

* removed torch.Tensor type annotations

* torch.nn.Module inheritance fix maybe

* hide inputs inside quantizer calls

* style structure something

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* reworked num_sms

* Update src/transformers/integrations/higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* revamped device checks

* docstring upd

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* edited tests and device map assertions

* minor edits

* updated flute cuda version in docker

* Added p=1 and 2,3bit HIGGS

* flute version check update

* incorporated `modules_to_not_convert`

* less hardcoding

* Fixed comment

* Added docs

* Fixed gemma support

* example in docs

* fixed torch_dtype for HIGGS

* Update docs/source/en/quantization/higgs.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Collection link

* dequantize interface

* newer flute version, torch.compile support

* unittest message fix

* docs update compile

* isort

* ValueError instead of assert

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2024-12-23 16:54:49 +01:00
Steven Liu
608e163b52
[docs] Follow up register_pipeline (#35310)
example json
2024-12-20 09:22:44 -08:00
UV
94fe0b915b
Improved Documentation Of Audio Classification (#35368)
* Improved Documentation Of Audio Classification

* Updated documentation as per review

* Updated audio_classification.md

* Update audio_classification.md
2024-12-20 09:17:28 -08:00
Joel Koch
c96cc039c3
Improve modular transformers documentation (#35322)
* Improve modular transformers documentation

- Adds hints to general contribution guides
- Lists which utils scripts are available to generate single-files from modular files and check their content

* Show commands in copyable code cells

---------

Co-authored-by: Joel Koch <joel@bitcrowd.net>
2024-12-20 09:16:02 -08:00
Sigbjørn Skjæret
eafbb0eca7
Implement AsyncTextIteratorStreamer for asynchronous streaming (#34931)
* Add AsyncTextIteratorStreamer class

* export AsyncTextIteratorStreamer

* export AsyncTextIteratorStreamer

* improve docs

* missing import

* missing import

* doc example fix

* doc example output fix

* add pytest-asyncio

* first attempt at tests

* missing import

* add pytest-asyncio

* fallback to wait_for and raise TimeoutError on timeout

* check for TimeoutError

* autodoc

* reorder imports

* fix style

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-20 12:08:12 +01:00
wejoncy
4e27a4009d
FEAT : Adding VPTQ quantization method to HFQuantizer (#34770)
* init vptq

* add integration

* add vptq support

fix readme

* add tests && format

* format

* address comments

* format

* format

* address comments

* format

* address comments

* remove debug code

* Revert "remove debug code"

This reverts commit ed3b3eaaba.

* fix test

---------

Co-authored-by: Yang Wang <wyatuestc@gmail.com>
2024-12-20 09:45:53 +01:00
Tom Aarsen
f42084e641
[docs] Add link to ModernBERT Text Classification GLUE finetuning script (#35347)
Add link to ModernBERT Text Classification GLUE finetuning script
2024-12-19 14:45:52 -08:00
Benjamin Warner
667ed5635e
Add ModernBERT to Transformers (#35158)
* initial cut of modernbert for transformers

* small bug fixes

* fixes

* Update import

* Use compiled mlp->mlp_norm to match research implementation

* Propagate changes in modular to modeling

* Replace duplicate attn_out_dropout in favor of attention_dropout

cc @warner-benjamin let me know if the two should remain separate!

* Update BOS to CLS and EOS to SEP

Please confirm @warner-benjamin

* Set default classifier bias to False, matching research repo

* Update tie_word_embeddings description

* Fix _init_weights for ForMaskedLM

* Match base_model_prefix

* Add compiled_head to match research repo outputs

* Fix imports for ModernBertForMaskedLM

* Just use "gelu" default outright for classifier

* Fix config name typo: initalizer -> initializer

* Remove some unused parameters in docstring. Still lots to edit there!

* Compile the embeddings forward

Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.

But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.

* Add drafts for ForSequenceClassification/ForTokenClassification

* Add initial SDPA support (not exactly equivalent to FA2 yet!)

During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.

* Only use attention dropout if training

* Add initial eager attention support (also not equivalent to FA2 yet!)

Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.

Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value

The fill-mask results are good with eager.

* Add initial tests, output_attentions, output_hidden_states, prune_heads

Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped

* Remove kwargs from ModernBertForMaskedLM

Disable sparse_prediction by default to match the normal HF, can be enabled via config

* Remove/adjust/skip improper tests; warn if padding but no attn mask

* Run formatting etc.

* Run python utils/custom_init_isort.py

* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)

* Reformat init_weights based on review

* self -> module in attention forwards

* Remove if config.tie_word_embeddings

* Reformat output projection on a different line

* Remove pruning

* Remove assert

* Call contiguous() to simplify paths

* Remove prune_qkv_linear_layer

* Format code

* Keep as kwargs, only use if needed

* Remove unused codepaths & related config options

* Remove 3d attn_mask test; fix token classification tuple output

* Reorder: attention_mask above position_ids, fixes gradient checkpointing

* Fix usage if no FA2 or torch v2.5+

* Make torch.compile/triton optional

Should we rename 'compile'? It's a bit vague

* Separate pooling options into separate functions (cls, mean) - cls as default

* Simplify _pad_modernbert_output, remove unused labels path

* Update tied weights to remove decoder.weight, simplify decoder loading

* Adaptively set config.compile based on hf_device_map/device/resize, etc.

* Update ModernBertConfig docstring

* Satisfy some consistency checks, add unfinished docs

* Only set compile to False if there's more than 1 device

* Add docstrings for public ModernBert classes

* Dont replace docstring returns - ends up being duplicate

* Fix mistake in toctree

* Reformat toctree

* Patched FlexAttention, SDPA, Eager with Local Attention

* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial

both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2

* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'

* Repad all_hidden_states as well

* rename config.compile to reference_compile

* disable flex_attention since it crashes

* Update modernbert.md

* Using dtype min to mask in eager

* Fully remove flex attention for now

It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.

Also, update compile -> reference_compile in one more case

* Call contiguous to allow for .view()

* Copyright 2020 -> 2024

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update/simplify __init__ structure

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove "... if dropout_prob > 0 else identity"

As dropout with 0.0 should be efficient like identity

* re-use existing pad/unpad functions instead of creating new ones

* remove flexattention method

* Compute attention_mask and local_attention_mask once in modeling

* Simplify sequence classification prediction heads, only CLS now

Users can make custom heads if they feel like it

Also removes the unnecessary pool parameter

* Simplify module.training in eager attn

* Also export ModernBertPreTrainedModel

* Update the documentation with links to finetuning scripts

* Explain local_attention_mask parameter in docstring

* Simplify _autoset_attn_implementation, rely on super()

* Keep "in" to initialize Prediction head

Doublechecked with Benjamin that it's correct/what we used for pretraining

* add back mean pooling

* Use the pooling head in TokenClassification

* update copyright

* Reset config._attn_implementation_internal on failure

* Allow optional attention_mask in ForMaskedLM head

* fix failing run_slow tests

* Add links to the paper

* Remove unpad_no_grad, always pad/unpad without gradients

* local_attention_mask -> sliding_window_mask

* Revert "Use the pooling head in TokenClassification"

This reverts commit 99c38badd1.

There was no real motivation, no info on whether having this bigger head does anything useful.

* Simplify pooling, 2 options via if-else

---------

Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Said Taghadouini <taghadouinisaid@gmail.com>
Co-authored-by: Benjamin Clavié <ben@clavie.eu>
Co-authored-by: Antoine Chaffin <ant54600@hotmail.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-19 14:03:35 +01:00
Tony Wu
d19b11f59b
Fix documentation for ColPali (#35321)
* docs: fix typo quickstart snippet in ColPali's model card

* docs: clean the ColPali's model card

* docs: make the `ColPaliForRetrieval`'s docstring more concise

* docs: add missing bash command used to convert weights for `vidore/colpali-v1.3-hf`
2024-12-19 09:08:28 +01:00
Yu Chin Fabian Lim
9613933b02
Add the Bamba Model (#34982)
* initial commit for PR

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* rename dynamic cache

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add more unit tests

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add integration test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add integration test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Add modular bamba file

* Remove trainer changes from unrelated PR

* Modify modular and cofig to get model running

* Fix some CI errors and beam search

* Fix a plethora of bugs from CI/docs/etc

* Add bamba to models with special caches

* Updat to newer mamba PR for mamba sublayer

* fix test_left_padding_compatibility

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix remaining tests

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* missed this test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* ran make style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* move slow tag to integration obj

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* make style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* address comments

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix modular

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* left out one part of modular

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* change model

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Make Rotary modular as well

* Update bamba.md

Added overview, update Model inference card and added config

* Update bamba.md

* Update bamba.md

* Update bamba.md

Minor fixes

* Add docs for config and model back

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Add warning when using fast kernels

* replaced generate example

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Address comments from PR

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Propagate attention fixes

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Fix attention interfaces to the new API

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Fix API for decoder layer

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Remove extra weights

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

---------

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: divya-kumari32 <72085811+divya-kumari32@users.noreply.github.com>
Co-authored-by: Antoni Viros <ani300@gmail.com>
2024-12-18 20:18:17 +01:00
Steven Liu
0531d7513b
[docs] Improve register_pipeline (#35300)
register_pipeline
2024-12-17 10:27:23 -08:00