* Add {decoder_,}head_mask to LED
* Fix create_custom_forward signatue in encoder
* Add head_mask to longformer
* Add head_mask to longformer to fix dependencies
of LED on Longformer.
* Not working yet
* Add mising one input in longofrmer_modeling.py
* make fix-copies
* change tokenizer requirement
* split line
* Correct typo from list to str
* improve style
* make other function pretty as well
* add comment
* correct typo
* add new test
* pass tests for tok without padding token
* Apply suggestions from code review
* Add {decoder_,}head_mask to fsmt_modeling.py
* Enable test_headmasking and some changes to docs
* Remove test_head_masking flag from fsmt test file
Remove test_head_masking flag from test_modeling_fsmt.py
since test_head_masking is set to be True by default (thus it is redundant to store).
* Merge master and remove test_head_masking = True
* Rebase necessary due to an update of jaxlib
* Remove test_head_masking=True in tests/test_modeling_fsmt.py
as it is redundant.
* Adding a new `return_full_text` parameter to TextGenerationPipeline.
For text-generation, it's sometimes used as prompting text.
In that context, prefixing `generated_text` with the actual input
forces the caller to take an extra step to remove it.
The proposed change adds a new parameter (for backward compatibility).
`return_full_text` that enables the caller to prevent adding the prefix.
* Doc quality.
* Remove redundant test_head_masking = True flags
* Remove all redundant test_head_masking flags in PyTorch test_modeling_* files
* Make test_head_masking = True as a default choice in test_modeling_tf_commong.py
* Remove all redundant test_head_masking flags in TensorFlow
test_modeling_tf_* files
* Put back test_head_masking=False fot TFT5 models
* fix --lr_scheduler_type choices
* rewrite to fix for all enum-based cl args
* cleanup
* adjust test
* style
* Proposal that should work
* Remove needless code
* Fix test
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
pipeline.
- If table is empty then the line that contain `answer[0]` will fail.
- This PR add a check to prevent `answer[0]`.
- Also adds an early check for presence of `table` and `query` to
prevent late failure and give better error message.
- Adds a few tests to make sure these errors are correctly raised.
* We most likely don't want special tokens in this output.
* Adding `skip_special_tokens=True` to FillMaskPipeline
- It's backward incompatible.
- It makes for sense for pipelines to remove references to
special_tokens (all of the other pipelines do that).
- Keeping special tokens makes it hard for users to actually remove them
because all models have different tokens (<s>, <cls>, [CLS], ....)
* Fixing `token_str` in the same vein, and actually fix the tests too !
* Add head_mask/decoder_head_mask for TF BART models
* Add head_mask and decoder_head_mask input arguments for TF BART-based
models as a TF counterpart to the PR #9569
* Add test_headmasking functionality to tests/test_modeling_tf_common.py
* TODO: Add a test to verify that we can get a gradient back for
importance score computation
* Remove redundant #TODO note
Remove redundant #TODO note from tests/test_modeling_tf_common.py
* Fix assertions
* Make style
* Fix ...Model input args and adjust one new test
* Add back head_mask and decoder_head_mask to BART-based ...Model
after the last commit
* Remove head_mask ande decoder_head_mask from input_dict
in TF test_train_pipeline_custom_model as these two have different
shape than other input args (Necessary for passing this test)
* Revert adding global_rng in test_modeling_tf_common.py
* Add decoder_head_mask for PyTorch T5 model
* Add decoder_head_mask args into T5Model and T5ForConditionalGeneration
* Slightly change the order of input args to be in accordance
with the convention from BART-based models introduced within the PR #9569.
* Make style for modeling_t5.py
* Add decoder_head_mask for TF T5 models
* Separate head_mask and decoder_head_mask args in TF T5 models
* Slightly change the order of input args to follow convention
of BART-based models updated in PR #9569
* Update test_forward_signature tests/test_modeling_tf_common.py
w.r.t. the changed order of input args
* Add FutureWarnings for T5 and TFT5 models
* Add FutureWarnings for T5 and TFT5 models warning a user that
input argument `head_mask` was split into two arguments -
`head_mask` and `decoder_head_mask`
* Add default behaviour - `decoder_head_mask` is set to copy
`head_mask`
* Fix T5 modeling and FutureWarning
* Make proper usage of head_mask and decoder_head_mask
in cross_attention
* Fix conditions for raising FutureWarning
* Reformat FutureWarning in T5 modeling
* Refactor the warning message
* Update past_key_values in gpt2 (#9391)
* Update generation_utils, and rename some items
* Update modeling_gpt2 to avoid an error in gradient_checkpointing
* Remove 'reorder_cache' from util and add variations to XLNet, TransfoXL, GPT-2
* Change the location of '_reorder_cache' in modeling files
* Add '_reorder_cache' in modeling_ctrl
* Fix a bug of my last commit in CTRL
* Add '_reorder_cache' to GPT2DoubleHeadsModel
* Manage 'use_cache' in config of test_modeling_gpt2
* Clean up the doc string
* Update src/transformers/models/gpt2/modeling_gpt2.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Fix the doc string (GPT-2, CTRL)
* improve gradient_checkpointing_behavior
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Add head_mask/decoder_head_mask for BART
This branch implement head_mask and decoder_head_mask
for BART-based models. Full list below:
- BART
- MBart
- Blenderbot
- BlenderbotSmall
- Marian
- Pegasus
Everything is accompanied with updated testing.
* Fix test_headmasking for BART models
* Fix text_headmasking for BART-like models
which has only 2 layers in each modules.
The condition
```
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
```
is, therefore, invalid for encoder-decoder models considering
the `head_mask`
```
head_mask = torch.ones(
self.model_tester.num_hidden_layers,
self.model_tester.num_attention_heads,
device=torch_device,
)
head_mask[0, 0] = 0
head_mask[-1, :-1] = 0
```
specified in the `test_headmasking` test/function.
* Adjust test_modeling_common.py to reflect T5 input args
* Update tests/test_modeling_common.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* make style
* make fix-copies
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Add target contextmanager and rework prepare_seq2seq_batch
* Fix tests, treat BART and Barthez
* Add last tokenizers
* Fix test
* Set src token before calling the superclass
* Remove special behavior for T5
* Remove needless imports
* Remove needless asserts
* Add LayoutLMForSequenceClassification and integration tests
Improve docs
Add LayoutLM notebook to list of community notebooks
* Make style & quality
* Address comments by @sgugger, @patrickvonplaten and @LysandreJik
* Fix rebase with master
* Reformat in one line
* Improve code examples as requested by @patrickvonplaten
Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Enable TruncationStrategy override for pipelines
* Update isort.
* Fixing test
* Fixing text_generation pipeline.
* Using same DummyTok as other PR for easier merge later.
* Some more import guards.
* Remove bogus file.
* Do not pass `generate_kwargs` to `_parse_and_tokenize`.
@patrickvonplaten
* Removed DummyTok.
* Doc quality.