* Enabling dataset iteration on pipelines.
Enabling dataset iteration on pipelines.
Unifying parameters under `set_parameters` function.
Small fix.
Last fixes after rebase
Remove print.
Fixing text2text `generate_kwargs`
No more `self.max_length`.
Fixing tf only conversational.
Consistency in start/stop index over TF/PT.
Speeding up drastically on TF (nasty bug where max_length would increase
a ton.)
Adding test for support for non fast tokenizers.
Fixign GPU usage on zero-shot.
Fix working on Tf.
Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Update src/transformers/pipelines/base.py
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Small cleanup.
Remove all asserts + simple format.
* Fixing audio-classification for large PR.
* Overly explicity null checking.
* Encapsulating GPU/CPU pytorch manipulation directly within `base.py`.
* Removed internal state for parameters of the pipeline.
Instead of overriding implicitly internal state, we moved
to real named arguments on every `preprocess`, `_forward`,
`postprocess` function.
Instead `_sanitize_parameters` will be used to split all kwargs
of both __init__ and __call__ into the 3 kinds of named parameters.
* Move import warnings.
* Small fixes.
* Quality.
* Another small fix, using the CI to debug faster.
* Last fixes.
* Last fix.
* Small cleanup of tensor moving.
* is not None.
* Adding a bunch of docs + a iteration test.
* Fixing doc style.
* KeyDataset = None guard.
* RRemoving the Cuda test for pipelines (was testing).
* Even more simple iteration test.
* Correct import .
* Long day.
* Fixes in docs.
* [WIP] migrating object detection.
* Fixed the target_size bug.
* Fixup.
* Bad variable name.
* Fixing `ensure_on_device` respects original ModelOutput.
* Doctests
* Limit to 4 decimals
* Try with separate PT/TF tests
* Remove test for TF
* Ellips the predictions
* Doctest continue on failure
Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
* Fix doctests for quicktour
* Adapt causal LM exemple
* Remove space
* Fix until summarization
* End of task summary
* Style
* With last changes in quicktour
* Important files
* Styling them all
* Revert "Styling them all"
This reverts commit 7d029395fd.
* Syling them for realsies
* Fix syntax error
* Fix benchmark_utils
* More fixes
* Fix modeling auto and script
* Remove new line
* Fixes
* More fixes
* Fix more files
* Style
* Add FSMT
* More fixes
* More fixes
* More fixes
* More fixes
* Fixes
* More fixes
* More fixes
* Last fixes
* Make sphinx happy
* Clean up model documentation
* Formatting
* Preparation work
* Long lines
* Main work on rst files
* Cleanup all config files
* Syntax fix
* Clean all tokenizers
* Work on first models
* Models beginning
* FaluBERT
* All PyTorch models
* All models
* Long lines again
* Fixes
* More fixes
* Update docs/source/model_doc/bert.rst
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update docs/source/model_doc/electra.rst
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Last fixes
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Switch from return_tuple to return_dict
* Fix test
* [WIP] Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleC… (#5614)
* Test TF Flaubert + Add {XLM, Flaubert}{TokenClassification, MultipleChoice} models and tests
* AutoModels
Tiny tweaks
* Style
* Final changes before merge
* Re-order for simpler review
* Final fixes
* Addressing @sgugger's comments
* Test MultipleChoice
* Rework TF trainer (#6038)
* Fully rework training/prediction loops
* fix method name
* Fix variable name
* Fix property name
* Fix scope
* Fix method name
* Fix tuple index
* Fix tuple index
* Fix indentation
* Fix variable name
* fix eval before log
* Add drop remainder for test dataset
* Fix step number + fix logging datetime
* fix eval loss value
* use global step instead of step + fix logging at step 0
* Fix logging datetime
* Fix global_step usage
* Fix breaking loop + logging datetime
* Fix step in prediction loop
* Fix step breaking
* Fix train/test loops
* Force TF at least 2.2 for the trainer
* Use assert_cardinality to facilitate the dataset size computation
* Log steps per epoch
* Make tfds compliant with TPU
* Make tfds compliant with TPU
* Use TF dataset enumerate instead of the Python one
* revert previous commit
* Fix data_dir
* Apply style
* rebase on master
* Address Sylvain's comments
* Address Sylvain's and Lysandre comments
* Trigger CI
* Remove unused import
* Switch from return_tuple to return_dict
* Fix test
* Add recent model
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: Julien Plu <plu.julien@gmail.com>
* Work on tokenizer summary
* Finish tutorial
* Link to it
* Apply suggestions from code review
Co-authored-by: Anthony MOI <xn1t0x@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Add vocab definition
Co-authored-by: Anthony MOI <xn1t0x@gmail.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* All done
* Link to the tutorial
* Typo fixes
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Add metnion of the return_xxx args
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Quicktour part 1
* Update
* All done
* Typos
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
* Address comments in quick tour
* Update docs/source/quicktour.rst
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update from feedback
Co-authored-by: Thomas Wolf <thomwolf@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>