* TF Tapas first commit
* updated docs
* updated logger message
* updated pytorch weight conversion
script to support scalar array
* added use_cache to tapas model config to
work properly with tf input_processing
* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes
* updated docs
* + test for tapas
* updated testing_utils to check
is_tensorflow_probability_available
* converted model logits post processing using
numpy to work with both PT and TF models
* + TFAutoModelForTableQuestionAnswering
* added TF support
* added test for
TFAutoModelForTableQuestionAnswering
* added test for
TFAutoModelForTableQuestionAnswering pipeline
* updated auto model docs
* fixed typo in import
* added tensorflow_probability to run tests
* updated MLM head
* updated tapas.rst with TF model docs
* fixed optimizer import in docs
* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade
* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy
* updated docs.
* removed `use_cache` from config
* removed floats_tensor
* updated code comment
* updated Copyright Year and
logits_aggregation Optional
* updated docs and comments
* updated docstring
* fixed model weight loading
* make fixup
* fix indentation
* added tf slow pipeline test
* pip upgrade
* upgrade python to 3.7
* removed from_pt from tests
* revert commit f18cfa9
* First commit: adding all files from tapas_v3
* Fix multiple bugs including soft dependency and new structure of the library
* Improve testing by adding torch_device to inputs and adding dependency on scatter
* Use Python 3 inheritance rather than Python 2
* First draft model cards of base sized models
* Remove model cards as they are already on the hub
* Fix multiple bugs with integration tests
* All model integration tests pass
* Remove print statement
* Add test for convert_logits_to_predictions method of TapasTokenizer
* Incorporate suggestions by Google authors
* Fix remaining tests
* Change position embeddings sizes to 512 instead of 1024
* Comment out positional embedding sizes
* Update PRETRAINED_VOCAB_FILES_MAP and PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
* Added more model names
* Fix truncation when no max length is specified
* Disable torchscript test
* Make style & make quality
* Quality
* Address CI needs
* Test the Masked LM model
* Fix the masked LM model
* Truncate when overflowing
* More much needed docs improvements
* Fix some URLs
* Some more docs improvements
* Test PyTorch scatter
* Set to slow + minify
* Calm flake8 down
* First commit: adding all files from tapas_v3
* Fix multiple bugs including soft dependency and new structure of the library
* Improve testing by adding torch_device to inputs and adding dependency on scatter
* Use Python 3 inheritance rather than Python 2
* First draft model cards of base sized models
* Remove model cards as they are already on the hub
* Fix multiple bugs with integration tests
* All model integration tests pass
* Remove print statement
* Add test for convert_logits_to_predictions method of TapasTokenizer
* Incorporate suggestions by Google authors
* Fix remaining tests
* Change position embeddings sizes to 512 instead of 1024
* Comment out positional embedding sizes
* Update PRETRAINED_VOCAB_FILES_MAP and PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
* Added more model names
* Fix truncation when no max length is specified
* Disable torchscript test
* Make style & make quality
* Quality
* Address CI needs
* Test the Masked LM model
* Fix the masked LM model
* Truncate when overflowing
* More much needed docs improvements
* Fix some URLs
* Some more docs improvements
* Add add_pooling_layer argument to TapasModel
Fix comments by @sgugger and @patrickvonplaten
* Fix issue in docs + fix style and quality
* Clean up conversion script and add task parameter to TapasConfig
* Revert the task parameter of TapasConfig
Some minor fixes
* Improve conversion script and add test for absolute position embeddings
* Improve conversion script and add test for absolute position embeddings
* Fix bug with reset_position_index_per_cell arg of the conversion cli
* Add notebooks to the examples directory and fix style and quality
* Apply suggestions from code review
* Move from `nielsr/` to `google/` namespace
* Apply Sylvain's comments
Co-authored-by: sgugger <sylvain.gugger@gmail.com>
Co-authored-by: Rogge Niels <niels.rogge@howest.be>
Co-authored-by: LysandreJik <lysandre.debut@reseau.eseo.fr>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
Co-authored-by: sgugger <sylvain.gugger@gmail.com>