* add interpolation of positional encoding support to swin
* add style changes
* use default image processor and make size a dictionary
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove logits testing
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Refactor image size validation logic when interpolation is disabled
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* remove asserts in modeling
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* add dynamic resolution input support to swinv2
* change size to ensure interpolation encoding path is triggered
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* set interpolate_pos_encoding default value to False
* add dynamic resolution input to donut swin
* add dynamic resolution input to maskformer swin
---------
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Port core files + ESM (because ESM code is odd)
* Search-replace in modelling code
* Fix up transfo_xl as well
* Fix other core files + tests (still need to add correct import to tests)
* Fix cookiecutter
* make fixup, fix imports in some more core files
* Auto-add imports to tests
* Cleanup, add imports to sagemaker tests
* Use correct exception for importing tf_keras
* Fixes in modeling_tf_utils
* make fixup
* Correct version parsing code
* Ensure the pipeline tests correctly revert to float32 after each test
* Ensure the pipeline tests correctly revert to float32 after each test
* More tf.keras -> keras
* Add dtype cast
* Better imports of tf_keras
* Add a cast for tf.assign, just in case
* Fix callback imports
* Fix one BLIP arg not being optional, remove misspelled arg
* Remove the lxmert test overrides and just use the base test_saved_model_creation
* saved_model_creation fixes and re-enabling tests across the board
* Remove unnecessary skip
* Stop caching sinusoidal embeddings in speech_to_text
* Fix transfo_xl compilation
* Fix transfo_xl compilation
* Fix the conditionals in xglm
* Set the save spec only when building
* Clarify comment
* Move comment correctly
* Correct embeddings generation for speech2text
* Mark RAG generation tests as @slow
* Remove redundant else:
* Add comment to clarify the save_spec line in build()
* Fix size tests for XGLM at last!
* make fixup
* Remove one band_part operation
* Mark test_keras_fit as @slow
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Don't forget the imports
* Add the imports to tests too
* make fixup
* Refactor tests that depended on get_type_hints
* Better test refactor
* Fix an old hidden bug in the test_keras_fit input creation code
* Fix for the Deit tests
* Add out_indices to backbones, deprecate out_features
* Update - can specify both out_features and out_indices but not both
* Add backbone mixin tests
* Test tidy up
* Add test_backbone for convnext
* Remove redefinition of method
* Update for Dinat and Nat backbones
* Update tests
* Smarter indexing
* Add checks on config creation for backbone
* PR comments
* time to say goodbye, torch 1.7 and 1.8
* clean up torch_int_div
* clean up is_torch_less_than_1_8-9
* update
---------
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
* torch.jit._state
* Fix past CI
* Fix for perceiver
* Fix REALM
* Fix for Bloom
* Fix for SwinMode
* Fix for TrajectoryTransformerModel
* Fix for test_wav2vec2_with_lm
* make style
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
* Add serving_output and serving methods to some vision models
* Add serving outputs for DeiT
* Don't convert hidden states - differing shapes
* Make saveable
* Fix up
* Make swin saveable
* Add in tests
* Fix funnel tests (can't convert to tensor)
* Fix numpy call
* Tidy up a bit
* Add in hidden states - resnet
* Remove numpy
* Fix failing tests - tensor shape and skipping tests
* Remove duplicated function
* PR comments - formatting and var names
* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic
* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float
* Types consistent with docs; disable test on swin (slow)
* CI trigger
* Change input_features to float32
* Add serving_output for segformer
* Fixup
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
* Support for Bart and LayoutLM, and partial support for XLNet
* Support for mbart
* A lot of new models supported
* Support for other models
* LayoutLM fix
* Use strings instead of classes
* Fix torch.jit.script and pickling issues
* Fix get_attr issues
* Fix import in function
* Fix GPT-J and T5 tracing for torch=1.11
* Gate graph surgery on torch version
* Modeling minor changes to enable TorchScripting
* Model serialization / deserialization test
* Remove _assert_is_none users