Commit Graph

4366 Commits

Author SHA1 Message Date
NielsRogge
8490d3159c
Add ViTPose (#30530)
* First draft

* Make fixup

* Make forward pass worké

* Improve code

* More improvements

* More improvements

* Make predictions match

* More improvements

* Improve image processor

* Fix model tests

* Add classic decoder

* Convert classic decoder

* Verify image processor

* Fix classic decoder logits

* Clean up

* Add post_process_pose_estimation

* Improve post_process_pose_estimation

* Use AutoBackbone

* Add support for MoE models

* Fix tests, improve num_experts%

* Improve variable names

* Make fixup

* More improvements

* Improve post_process_pose_estimation

* Compute centers and scales

* Improve postprocessing

* More improvements

* Fix ViTPoseBackbone tests

* Add docstrings, fix image processor tests

* Update index

* Use is_cv2_available

* Add model to toctree

* Add cv2 to doc tests

* Remove script

* Improve conversion script

* Add coco_to_pascal_voc

* Add box_to_center_and_scale to image_transforms

* Update tests

* Add integration test

* Fix merge

* Address comments

* Replace numpy by pytorch, improve docstrings

* Remove get_input_embeddings

* Address comments

* Move coco_to_pascal_voc

* Address comment

* Fix style

* Address comments

* Fix test

* Address comment

* Remove udp

* Remove comment

* [WIP] need to check if the numpy function is same as cv

* add scipy affine_transform

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* refactor convert

* add output_shape

* add atol 5e-2

* Use hf_hub_download in conversion script

* make box_to_center more applicable

* skipt test_get_set_embedding

* fix to accept array and fix CI

* add co-contributor

* make it to tensor type output

* add torch

* change to torch tensor

* add more test

* minor change

* CI test change

* import torch should be above ImageProcessor

* make style

* try not use torch in def

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/configuration_vitpose_backbone.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* fix

* fix

* add caution

* make more detail about dataset_index

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>

* add docs

* Update docs/source/en/model_doc/vitpose.md

* Update src/transformers/models/vitpose/configuration_vitpose.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* Revert "Update src/transformers/__init__.py"

This reverts commit 7ffa504450.

* change name

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update tests/models/vitpose/test_modeling_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* move vitpose only function to image_processor

* raise valueerror when using timm backbone

* use out_indices

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove camel-case of def flip_back

* rename vitposeEstimatorOutput

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix confused camelcase of MLP

* remove in-place logic

* clear scale description

* make consistent batch format

* docs update

* formatting docstring

* add batch tests

* test docs change

* Update src/transformers/models/vitpose/image_processing_vitpose.py

* Update src/transformers/models/vitpose/configuration_vitpose.py

* chagne ViT to Vit

* change to enable MoE

* make fix-copies

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* extract udp

* add more described docs

* simple fix

* change to accept target_size

* make style

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Update src/transformers/models/vitpose/configuration_vitpose.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* change to `verify_backbone_config_arguments`

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* remove unnecessary copy

* make config immutable

* enable gradient checkpointing

* update inappropriate docstring

* linting docs

* split function for visibility

* make style

* check isinstances

* change to acceptable use_pretrained_backbone

* make style

* remove copy in docs

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/vitpose/modeling_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* simple fix + make style

* change input config of activation function to string

* Update docs/source/en/model_doc/vitpose.md

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* tmp docs

* delete index.md

* make fix-copies

* simple fix

* change conversion to sam2/mllama style

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/vitpose/image_processing_vitpose.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* refactor convert

* add supervision

* Update src/transformers/models/vitpose_backbone/modeling_vitpose_backbone.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* remove reduntant def

* seperate code block for visualization

* add validation for num_moe

* final commit

* add labels

* [run-slow] vitpose, vitpose_backbone

* Update src/transformers/models/vitpose/convert_vitpose_to_hf.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* enable all conversion

* final commit

* [run-slow] vitpose, vitpose_backbone

* ruff check --fix

* [run-slow] vitpose, vitpose_backbone

* rename split module

* [run-slow] vitpose, vitpose_backbone

* fix pos_embed

* Simplify init

* Revert "fix pos_embed"

This reverts commit 2c56a4806e.

* refactor single loop

* allow flag to enable custom model

* efficiency of MoE to not use unused experts

* make style

* Fix range -> arange to avoid warning

* Revert MOE router, a new one does not work

* Fix postprocessing a bit (labels)

* Fix type hint

* Fix docs snippets

* Fix links to checkpoints

* Fix checkpoints in tests

* Fix test

* Add image to docs

---------

Co-authored-by: Niels Rogge <nielsrogge@nielss-mbp.home>
Co-authored-by: Niels Rogge <nielsrogge@Nielss-MacBook-Pro.local>
Co-authored-by: sangbumchoi <danielsejong55@gmail.com>
Co-authored-by: Sangbum Daniel Choi <34004152+SangbumChoi@users.noreply.github.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-08 16:02:14 +00:00
Minho Shim
4349a0e401
fix: Qwen2-VL generate with inputs_embeds (#35466)
* fix: Qwen2-VL generate with inputs_embeds

* change: optional input_ids in get_rope_index
2025-01-08 16:36:03 +01:00
Sean (Seok-Won) Yi
88e18b3c63
Update doc for metric_for_best_model when save_strategy="best". (#35389)
* Updated docstring for _determine_best_metric.

* Updated docstring for metric_for_best_model.

* Added test case for save strategy.

* Updated incorrect test case.

* Changed eval_strategy to match save_strategy.

* Separated test cases for metric.

* Allow load_best_model when save_strategy == "best".

* Updated docstring for metric_for_best_model.
2025-01-08 16:32:35 +01:00
Pavel Iakubovskii
657bb14f98
Enable auto task for timm models in pipeline (#35531)
* Enable auto task for timm models

* Add pipeline test
2025-01-08 15:14:17 +00:00
Pavel Iakubovskii
59e5b3f01b
Timm wrapper label names (#35553)
* Add timm wrapper label names mapping

* Add index to classification pipeline

* Revert adding index for pipelines

* Add custom model check for loading timm labels

* Add tests for labels

* [run-slow] timm_wrapper

* Add note regarding label2id mapping
2025-01-08 14:09:46 +00:00
Jacky Lee
3c1895aa65
Fix Qwen2VL processor to handle odd number of frames (#35431)
* fix: processing odd number of frames

* feat: add test case

* update: test one frame

* feat: support custom patch size

* fix: test with videos

* revert: change on patch repeat

* fix: much wow

* update: fixups

* fixup pls

* ruff fixup

* fix typo at least
2025-01-08 13:49:00 +01:00
Quentin Lhoest
3fde88b19d
support chat generator as input of TextGenerationPipeline (#35551)
* support chat generator as input of TextGenerationPipeline

* missing import

* fix tests

* again

* simpler

* add test
2025-01-08 13:27:07 +01:00
Raushan Turganbay
d1681ec2b6
VLMs: major clean up 🧼 (#34502)
only lllava models are modified
2025-01-08 10:35:23 +01:00
Jade Choghari
7176e06b52
Add TextNet (#34979)
* WIP

* Add config and modeling for Fast model

* Refactor modeling and add tests

* More changes

* WIP

* Add tests

* Add conversion script

* Add conversion scripts, integration tests, image processor

* Fix style and copies

* Add fast model to init

* Add fast model in docs and other places

* Fix import of cv2

* Rename image processing method

* Fix build

* Fix Build

* fix style and fix copies

* Fix build

* Fix build

* Fix Build

* Clean up docstrings

* Fix Build

* Fix Build

* Fix Build

* Fix build

* Add test for image_processing_fast and add documentation tests

* some refactorings

* Fix failing tests

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Introduce TextNet

* Fix failures

* Refactor textnet model

* Fix failures

* Add cv2 to setup

* Fix failures

* Fix failures

* Add CV2 dependency

* Fix bugs

* Fix build issue

* Fix failures

* Remove textnet from modeling fast

* Fix build and other things

* Fix build

* some cleanups

* some cleanups

* Some more cleanups

* Fix build

* Incorporate PR feedbacks

* More cleanup

* More cleanup

* More cleanup

* Fix build

* Remove all the references of fast model

* More cleanup

* Fix build

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix Build

* Fix build

* Fix build

* Fix build

* Fix build

* Fix build

* Incorporate PR feedbacks

* Fix style

* Fix build

* Incorporate PR feedbacks

* Fix image processing mean and std

* Incorporate PR feedbacks

* fix build failure

* Add assertion to image processor

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* fix style failures

* fix build

* Fix Imageclassification's linear layer, also introduce TextNetImageProcessor

* Fix build

* Fix build

* Fix build

* Fix build

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix build

* Incorporate PR feedbacks

* Remove some script

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Incorporate PR feedbacks

* Fix image processing in textnet

* Incorporate PR Feedbacks

* Fix CI failures

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Fix failing test

* Add textnet to readme

* Improve readability

* Incorporate PR feedbacks

* fix code style

* fix key error and convert working

* tvlt shouldn't be here

* fix test modeling test

* Fix tests, make fixup

* Make fixup

* Make fixup

* Remove TEXTNET_PRETRAINED_MODEL_ARCHIVE_LIST

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update tests/models/textnet/test_image_processing_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* space typo

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* improve type annotation

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/configuration_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* make conv layer kernel sizes and strides default to None

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* fix keyword bug

* add batch init and make fixup

* Make fixup

* Update integration test

* Add figure

* Update textnet.md

* add testing and fix errors (classification, imgprocess)

* fix error check

* make fixup

* make fixup

* revert to original docstring

* add make style

* remove conflict for now

* Update modeling_auto.py

got a confusion in `timm_wrapper` - was giving some conflicts

* Update tests/models/textnet/test_modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update tests/models/textnet/test_modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* Update src/transformers/models/textnet/modeling_textnet.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* add changes

* Update textnet.md

* add doc

* add authors hf ckpt + rename

* add feedback: classifier/docs

---------

Co-authored-by: raghavanone <opensourcemaniacfreak@gmail.com>
Co-authored-by: jadechoghari <jadechoghari@users.noreply.huggingface.co>
Co-authored-by: Niels <niels.rogge1@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-01-08 09:52:51 +01:00
Matt
a7d1441d65
Correctly list the chat template file in the Tokenizer saved files list (#34974)
* Correctly list the chat template file in the saved files list

* Update src/transformers/tokenization_utils_base.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Add save file checking to test

* make fixup

* better filename handling

* make fixup

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2025-01-07 19:11:02 +00:00
eustlb
7f7677307c
[Qwen2Audio] handle input ids expansion during processing (#35534)
* add audio_token attribute to proc

* expand input_ids

* and legacy and expanded input_ids

* test update

* split lines

* add possibility not to provide eos and bos audio tokens

* raise errors

* test incorrect number of audio tokens

* add example

* fmt

* typo
2025-01-07 16:47:27 +01:00
Francesco Cariaggi
f408d55448
Fix bug when requesting input normalization with EnCodec (#34756)
* EnCodec: unsqueeze padding mask

* add test for normalization
2025-01-07 11:50:02 +01:00
松本和真
96bf3d6cc5
Add diffllama (#34083)
* first adding diffllama

* add Diff Attention and other but still with errors

* complate make attention Diff-Attention

* fix some bugs which may be caused by transformer-cli while adding model

* fix a bug caused by forgetting KV cache...

* Update src/transformers/models/diffllama/modeling_diffllama.py

You don't need to divide by 2 if we use same number of attention heads as llama. instead you can just split in forward.

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

new codes are more meaningful than before

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

new codes are more meaningful than before

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fix 2times divide by sqrt(self.head_dim)

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fix 2times divide by sqrt(self.head_dim)

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* Update src/transformers/models/diffllama/modeling_diffllama.py

fit to changeing "num_heads // 2" place.
and more visible

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* I found Attention missed implemented from paper still on e072544a3b.

* re-implemented

* adding groupnorm

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* align with transformers code style

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix typo

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* adding groupnorm

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* change SdpaAttention to DiffSdpaAttention

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix bug

* Update src/transformers/models/diffllama/modeling_diffllama.py

resolve "not same outputs" problem

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* fix bugs of places of "GroupNorm with scale" and etc

* Revert "fix bugs of places of "GroupNorm with scale" and etc"

This reverts commit 26307d92f6.

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* simplify multiple of attention (matmul) operations into one by repeating value_states

Co-authored-by: Minho Ryu <ryumin93@gmail.com>

* remove missed type

* add diffllama model_doc

* apply make style/quality

* apply review comment about model

* apply review comment about test

* place diffllama alphabetically on the src/transformers/__init__.py

* fix forgot code

* Supports parameters that are not initialized with standard deviation 0 in the conventional method

* add DiffLlamaConfig to CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK on utils/check_config_docstrings.py

* remove unused property of config

* add to supported model list

* add to spda supported model list

* fix copyright, remove pretraining_tensor_parallel, and modify for initialization test

* remove unused import and etc.

* empty commit

* empty commit

* empty commit

* apply modular transformers but with bugs

* revert prev commit

* create src/transformers/model/diffllama/modular_diffllama.py

* run utils/modular_model_converter.py

* empty commit

* leaner modular diffllama

* remove more and more in modular_diffllama.pt

* remove more and more in modular_diffllama.pt

* resolve missing docstring entries

* force reset

* convert modular

---------

Co-authored-by: Minho Ryu <ryumin93@gmail.com>
2025-01-07 11:34:56 +01:00
Dmitry Rogozhkin
9fd123ac31
ci: mark model_parallel tests as cuda specific (#35269)
`parallelize()` API is deprecated in favor of accelerate's `device_map="auto"`
and therefore is not accepting new features. At the same time `parallelize()`
implementation is currently CUDA-specific. This commit marks respective
ci tests with `@require_torch_gpu`.

Fixes: #35252

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2025-01-07 10:16:34 +01:00
pglorio
bd442c6d3a
Zamba new attention standard (#35375)
* updated zamba to new attention standard

* make fixup fixes
2025-01-07 10:08:45 +01:00
Sarthak Karandikar
ca00950057
added logic for deleting adapters once loaded (#34650)
* added logic for deleting adapters once loaded

* updated to the latest version of transformers, merged utility function into the source

* updated with missing check

* added peft version check

* Apply suggestions from code review

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>

* changes according to reviewer

* added test for deleting adapter(s)

* styling changes

* styling changes in test

* removed redundant code

* formatted my contributions with ruff

* optimized error handling

* ruff formatted with correct config

* resolved formatting issues

---------

Co-authored-by: Anton Vlasjuk <73884904+vasqu@users.noreply.github.com>
2025-01-06 18:36:40 +00:00
Yijun Lee
e5fd865eba
Add Gemma2 GGUF support (#34002)
* initial setup for ggml.py

* initial setup of GGUFGemma2Converter class

* Add gemma2 model to gguf.md doc

* Partial work on GGUF_TENSOR_MAPPING

* initial setup of GGUF_TENSOR_MAPPING for Gemma2

* refactor: rename GemmaConvert class to GemmaConverter for naming consistency

* feat: complete gemma2 tensor mapping implementation

* feat: add initial implementation of GGUFGemmaConverter

* feat: complete GGUFGemmaConverter implementation

* feat: add test code for gemma2

* refactor: minor code cleanup

* refactor: minor code cleanup

* fix: resolve suggestions

* Update tests/quantization/ggml/test_ggml.py

Co-authored-by: Isotr0py <2037008807@qq.com>

---------

Co-authored-by: Isotr0py <2037008807@qq.com>
2025-01-03 14:50:07 +01:00
Jacky Lee
30a9971632
Use sdpa_kernel in tests (#35472)
* update: use sdpa_kernel

* update: rerun test
2025-01-03 14:39:52 +01:00
Blanchon
cba49cb2a6
Change is_soundfile_availble to is_soundfile_available (#35030) 2025-01-03 14:37:42 +01:00
Matthew Douglas
6b1e86fd4d
Fix new BNB test failures (#35345) 2025-01-02 11:24:52 +01:00
NielsRogge
6e0515e99c
Add DINOv2 with registers (#35348)
* added changes from 32905

* fixed mistakes caused by select all paste

* rename diff_dinov2...

* ran tests

* Fix modular

* Fix tests

* Use new init

* Simplify drop path

* Convert all checkpoints

* Add figure and summary

* Update paths

* Update docs

* Update docs

* Update toctree

* Update docs

---------

Co-authored-by: BernardZach <bernardzach00@gmail.com>
Co-authored-by: Zach Bernard <132859071+BernardZach@users.noreply.github.com>
2024-12-24 13:21:59 +01:00
Yoni Gozlan
93aafdc620
Add compile test for fast image processor (#35184)
* add compile test for fast image processor

* override pixtral test
2024-12-23 13:12:45 -05:00
Miquel Farré
a1780b7ba5
bugfix Idefics3 processor - handle gracefully cases with text and no images (#35363)
* bugfix processing empty images

* fix

* fix

* Update src/transformers/models/idefics3/processing_idefics3.py

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* adding tests

* fix

* fix

* fix

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2024-12-23 16:59:01 +01:00
Andrei Panferov
64c05eecd6
HIGGS Quantization Support (#34997)
* higgs init

* working with crunches

* per-model workspaces

* style

* style 2

* tests and style

* higgs tests passing

* protecting torch import

* removed torch.Tensor type annotations

* torch.nn.Module inheritance fix maybe

* hide inputs inside quantizer calls

* style structure something

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* reworked num_sms

* Update src/transformers/integrations/higgs.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* revamped device checks

* docstring upd

* Update src/transformers/quantizers/quantizer_higgs.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* edited tests and device map assertions

* minor edits

* updated flute cuda version in docker

* Added p=1 and 2,3bit HIGGS

* flute version check update

* incorporated `modules_to_not_convert`

* less hardcoding

* Fixed comment

* Added docs

* Fixed gemma support

* example in docs

* fixed torch_dtype for HIGGS

* Update docs/source/en/quantization/higgs.md

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Collection link

* dequantize interface

* newer flute version, torch.compile support

* unittest message fix

* docs update compile

* isort

* ValueError instead of assert

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2024-12-23 16:54:49 +01:00
Mohamed Mekkouri
59178780a6
Fix : VPTQ test (#35394)
fix_test
2024-12-23 16:27:46 +01:00
Tibor Reiss
e10be82b71
uniformize kwargs for SAM (#34578)
* Make kwargs uniform for SAM

* Remove unused attribute

* Make point_pad_value part of image_kwargs

* Update annotations

* Code review - use existing methods

* Use ProcessorTesterMixin

* Do not add ProcessorTesterMixin everywhere
2024-12-23 13:54:57 +01:00
bastrob
8f38f58f3d
owlvit/2 dynamic input resolution (#34764)
* owlvit/2 dynamic input resolution.

* adapt box grid to patch_dim_h patch_dim_w

* fix ci

* clarify variable naming

* clarify variable naming..

* compute box_bias dynamically inside box_predictor

* change style part of code

* [run-slow] owlvit, owlv2
2024-12-21 08:51:09 +00:00
Yih-Dar
504c4d3692
Make test_generate_with_static_cache even less flaky (#34995)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-12-20 16:03:26 +01:00
Yih-Dar
05de764e9c
Aurevoir PyTorch 1 (#35358)
* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-12-20 14:36:31 +01:00
Sigbjørn Skjæret
eafbb0eca7
Implement AsyncTextIteratorStreamer for asynchronous streaming (#34931)
* Add AsyncTextIteratorStreamer class

* export AsyncTextIteratorStreamer

* export AsyncTextIteratorStreamer

* improve docs

* missing import

* missing import

* doc example fix

* doc example output fix

* add pytest-asyncio

* first attempt at tests

* missing import

* add pytest-asyncio

* fallback to wait_for and raise TimeoutError on timeout

* check for TimeoutError

* autodoc

* reorder imports

* fix style

---------

Co-authored-by: Arthur Zucker <arthur.zucker@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-20 12:08:12 +01:00
wejoncy
4e27a4009d
FEAT : Adding VPTQ quantization method to HFQuantizer (#34770)
* init vptq

* add integration

* add vptq support

fix readme

* add tests && format

* format

* address comments

* format

* format

* address comments

* format

* address comments

* remove debug code

* Revert "remove debug code"

This reverts commit ed3b3eaaba.

* fix test

---------

Co-authored-by: Yang Wang <wyatuestc@gmail.com>
2024-12-20 09:45:53 +01:00
Anton Vlasjuk
5a2aedca1e
[Mamba2] Fix caching, slow path, and multi-gpu (#35154)
* fixup mamba2 - caching and several other small fixes

* fixup cached forward

* correct fix this time

* fixup cache - we do not need to extend the attn mask it's handled by generate (gives total ids + mask at each step)

* remove unnecessary (un)squeeze

* fixup cache position

* simplify a few things

* [run-slow] mamba2

* multi gpu attempt two

* [run-slow] mamba2

* [run-slow] mamba2

* [run-slow] mamba2

* [run-slow] mamba2

* add newer slow path fix

* [run-slow] mamba2
2024-12-20 09:27:47 +01:00
Arthur
1fa807fa63
Fix some fa2 tests (#35340)
* remove fa2 test

* remove other failing tests

* style
2024-12-19 17:05:25 +01:00
Benjamin Warner
667ed5635e
Add ModernBERT to Transformers (#35158)
* initial cut of modernbert for transformers

* small bug fixes

* fixes

* Update import

* Use compiled mlp->mlp_norm to match research implementation

* Propagate changes in modular to modeling

* Replace duplicate attn_out_dropout in favor of attention_dropout

cc @warner-benjamin let me know if the two should remain separate!

* Update BOS to CLS and EOS to SEP

Please confirm @warner-benjamin

* Set default classifier bias to False, matching research repo

* Update tie_word_embeddings description

* Fix _init_weights for ForMaskedLM

* Match base_model_prefix

* Add compiled_head to match research repo outputs

* Fix imports for ModernBertForMaskedLM

* Just use "gelu" default outright for classifier

* Fix config name typo: initalizer -> initializer

* Remove some unused parameters in docstring. Still lots to edit there!

* Compile the embeddings forward

Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.

But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.

* Add drafts for ForSequenceClassification/ForTokenClassification

* Add initial SDPA support (not exactly equivalent to FA2 yet!)

During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.

* Only use attention dropout if training

* Add initial eager attention support (also not equivalent to FA2 yet!)

Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.

Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value

The fill-mask results are good with eager.

* Add initial tests, output_attentions, output_hidden_states, prune_heads

Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped

* Remove kwargs from ModernBertForMaskedLM

Disable sparse_prediction by default to match the normal HF, can be enabled via config

* Remove/adjust/skip improper tests; warn if padding but no attn mask

* Run formatting etc.

* Run python utils/custom_init_isort.py

* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)

* Reformat init_weights based on review

* self -> module in attention forwards

* Remove if config.tie_word_embeddings

* Reformat output projection on a different line

* Remove pruning

* Remove assert

* Call contiguous() to simplify paths

* Remove prune_qkv_linear_layer

* Format code

* Keep as kwargs, only use if needed

* Remove unused codepaths & related config options

* Remove 3d attn_mask test; fix token classification tuple output

* Reorder: attention_mask above position_ids, fixes gradient checkpointing

* Fix usage if no FA2 or torch v2.5+

* Make torch.compile/triton optional

Should we rename 'compile'? It's a bit vague

* Separate pooling options into separate functions (cls, mean) - cls as default

* Simplify _pad_modernbert_output, remove unused labels path

* Update tied weights to remove decoder.weight, simplify decoder loading

* Adaptively set config.compile based on hf_device_map/device/resize, etc.

* Update ModernBertConfig docstring

* Satisfy some consistency checks, add unfinished docs

* Only set compile to False if there's more than 1 device

* Add docstrings for public ModernBert classes

* Dont replace docstring returns - ends up being duplicate

* Fix mistake in toctree

* Reformat toctree

* Patched FlexAttention, SDPA, Eager with Local Attention

* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial

both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2

* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'

* Repad all_hidden_states as well

* rename config.compile to reference_compile

* disable flex_attention since it crashes

* Update modernbert.md

* Using dtype min to mask in eager

* Fully remove flex attention for now

It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.

Also, update compile -> reference_compile in one more case

* Call contiguous to allow for .view()

* Copyright 2020 -> 2024

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update/simplify __init__ structure

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove "... if dropout_prob > 0 else identity"

As dropout with 0.0 should be efficient like identity

* re-use existing pad/unpad functions instead of creating new ones

* remove flexattention method

* Compute attention_mask and local_attention_mask once in modeling

* Simplify sequence classification prediction heads, only CLS now

Users can make custom heads if they feel like it

Also removes the unnecessary pool parameter

* Simplify module.training in eager attn

* Also export ModernBertPreTrainedModel

* Update the documentation with links to finetuning scripts

* Explain local_attention_mask parameter in docstring

* Simplify _autoset_attn_implementation, rely on super()

* Keep "in" to initialize Prediction head

Doublechecked with Benjamin that it's correct/what we used for pretraining

* add back mean pooling

* Use the pooling head in TokenClassification

* update copyright

* Reset config._attn_implementation_internal on failure

* Allow optional attention_mask in ForMaskedLM head

* fix failing run_slow tests

* Add links to the paper

* Remove unpad_no_grad, always pad/unpad without gradients

* local_attention_mask -> sliding_window_mask

* Revert "Use the pooling head in TokenClassification"

This reverts commit 99c38badd1.

There was no real motivation, no info on whether having this bigger head does anything useful.

* Simplify pooling, 2 options via if-else

---------

Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Said Taghadouini <taghadouinisaid@gmail.com>
Co-authored-by: Benjamin Clavié <ben@clavie.eu>
Co-authored-by: Antoine Chaffin <ant54600@hotmail.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-19 14:03:35 +01:00
Yu Chin Fabian Lim
9613933b02
Add the Bamba Model (#34982)
* initial commit for PR

Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>

* rename dynamic cache

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add more unit tests

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add integration test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* add integration test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Add modular bamba file

* Remove trainer changes from unrelated PR

* Modify modular and cofig to get model running

* Fix some CI errors and beam search

* Fix a plethora of bugs from CI/docs/etc

* Add bamba to models with special caches

* Updat to newer mamba PR for mamba sublayer

* fix test_left_padding_compatibility

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix remaining tests

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* missed this test

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* ran make style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* move slow tag to integration obj

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* make style

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* address comments

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix modular

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* left out one part of modular

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* change model

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Make Rotary modular as well

* Update bamba.md

Added overview, update Model inference card and added config

* Update bamba.md

* Update bamba.md

* Update bamba.md

Minor fixes

* Add docs for config and model back

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Add warning when using fast kernels

* replaced generate example

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* Address comments from PR

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Propagate attention fixes

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Fix attention interfaces to the new API

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Fix API for decoder layer

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

* Remove extra weights

Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>

---------

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Signed-off-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: Gabe Goodhart <gabe.l.hart@gmail.com>
Co-authored-by: Antoni Viros i Martin <aviros@ibm.com>
Co-authored-by: divya-kumari32 <72085811+divya-kumari32@users.noreply.github.com>
Co-authored-by: Antoni Viros <ani300@gmail.com>
2024-12-18 20:18:17 +01:00
Arthur
2c47618c1a
🚨All attention refactor🚨 (#35235)
* refactor LlamaAttention

* minimal changes

* fix llama

* update

* modular gemmas

* modular nits

* modular updates

* nits

* simplify

* gpt2

* more modualr and fixes

* granite

* modular modular modular

* nits

* update

* qwen2 + starcoder2

* mostly gemma2

* Update image_processing_auto.py

* fix

* Update modular_starcoder2.py

* fix

* remove all copied from attentions

* remove gcv

* make fix-copies

* oups

* oups2.0

* fix some modulars + all copied from

* should be good now

* revert unwanted changes

* Update modeling_decision_transformer.py

* finish cleanup

* Update modeling_olmo.py

* consistency

* re-add gradient checkpointing attribute

* fix

* style

* make config necessary

* bis

* bis

* Update modeling_my_new_model2.py

* is_causal attr

* fix

* remove past kv return from decoder layer

* fix

* default rope config

* correctly fix rope config

* fix bias

* fix gpt2 attention output

* fix test

* fix inits

* fix default sdpa

* fix default sdpa implementation

* harmonize classes

* fix mistral

* fix sliding window models

* mixtral

* be more explicit

* style

* fix

* several fixes

* Update modeling_dbrx.py

* fix test

* olmo + phi

* rotary

* syle

* phi

* phi again

* again

* kwargs

* Update test_modeling_common.py

* skip fx tracing tests

* Update modeling_utils.py

* gemma 2

* again

* Update modeling_recurrent_gemma.py

* gemma2

* granite

* style

* starcoder

* Update sdpa_attention.py

* switch args

* Update modeling_mllama.py

* fix

* cache type tests

* gpt2

* Update test_modeling_common.py

* fix

* consistency

* fix shape with encoder

* should be the last one

* tests non model

* most comments

* small oupsi

* be more explicit in modulars

* more explicit modulars

* CIs! it works locally

* add kwargs to _flash_attention_forward

---------

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2024-12-18 16:53:39 +01:00
jiqing-feng
69e31eb1bf
change bnb tests (#34713)
* fix training tests

* fix xpu check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* rm pdb

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix 4bit logits check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix 4bit logits check

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* add xpu check on int8 training

* fix training tests

* add llama test on bnb

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* only cpu and xpu disable autocast training

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

* fix format

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>

---------

Signed-off-by: jiqing-feng <jiqing.feng@intel.com>
Co-authored-by: Titus <9048635+Titus-von-Koeller@users.noreply.github.com>
2024-12-18 09:49:59 -05:00
eustlb
da334bcfa8
[Whisper] 🚨 Fix whisper decoding 🚨 (#34135)
* do not remove decoder_input_ids for the first segment

* do not remove eos token in generate_with_fallback

* when removing padding tokens, do not remove eos token

* remove eos token in generate (and not in generate_with_fallback!)

* reconciliate short-from/ long-form behavior

* correct avg_logprobs calculation

* handle eos token in segments

* handle decoder_input_ids and eos token in _prepare_decoder_input_ids

* fix incorrect time precision

* always remove eos token

* always remove decoder_input_ids

* no need to handle decoder_inputs_ids and eos token

* no need to remove decoder_input_ids

* no need to handle eos token

* fix num_beams in _retrieve_logit_processors

* remove todo unconsistency

* no need to add eos token

* last_timestamp_pos should indeed be timestamp token pos

* patch generate to enable compatibility with GenerationTesterMixin tests

* adapt test_generate_continue_from_past_key_values

* adapt test_prompt_lookup_decoding_matches_greedy_search

* adapt generic GenerationMixin tests to whisper's generate

* fix speculative decoding

* fix

* [run-slow] whisper

* change HF_HUB_TOKEN for require_read_token

* [run-slow] whisper

* prioritize kwargs over generation_config

* remove unnecessary args

* [run-slow] whisper

* update tests

* [run-slow] whisper

* add comment

* update test

* [run-slow] whisper

* update test + revert require_read_token

* docstring updates

* revert tokenizer decode args change

* do not use a patch + docstring updates

* [run-slow] whisper

* make

* [run-slow] whisper

* add a flag to force unique call to generate

* test update

* [run-slow] whisper

* add force_unique_generate_call arg

* do not use a patch

* correct the timestamps for the pad tokens

* docstring update

* docstring update

* docstring update

* upodate TF tests

* add require_read_token

* [run-slow] whisper

* test reset dynamo

* [run-slow] whisper

* fix

* [run-slow] whisper

* avoid iterating twice on current_segments

* [run-slow] whisper

* [run-slow] whisper

---------

Co-authored-by: Eustache Le Bihan <eustlb@users.noreply.huggingface.co>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2024-12-18 14:13:21 +01:00
Fanli Lin
c7e48053aa
[tests] make cuda-only tests device-agnostic (#35222)
fix cuda-only tests
2024-12-18 10:14:22 +01:00
Marc Sun
1eee1cedfd
Fix loading with only state dict and low_cpu_mem_usage = True (#35217)
* fix loading with only state dict and config

* style

* add tests

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2024-12-18 09:54:32 +01:00
Magnus
6eb00dd2f0
Support for SDPA for SAM models (#34110)
* feat: add support for sdpa and gradient checkpointing

* fix: ruff format

* fix: config sdpa

* fix: sdpa layer naming convention

* fix: update test_eager_matches_sdpa_inference to handle vision_hidden_states

* test: skip incompatible tests and fix loading issue with sdpa

- Updated tests to skip cases flash and dynamic compile.
- Minor adjustment to ensure correct loading of model with sdpa for dispatch test.

* style: apply Ruff formatting

* ruff fix again after rebase

* [run-slow] sam

* [run-slow] sam

* refactor: Address review comments and improve sub-config handling in SAM model tests

- Added attributes for sub_configs as per PR #34410.
- Enabled tests for configs, ensuring the composite model (SAM) has several sub-configs in the main config.
- Added class attribute _is_composite=True to the tester class
- test_sdpa_can_dispatch_composite_models added

* [run-slow] sam

* style: ruff

* [run-slow] sam

* style: ruff again ...

* [run-slow] sam
2024-12-17 14:46:05 +01:00
Omar Salman
747f361da1
Add sdpa for Beit (#34941)
* Add sdpa for Beit

* Updates

* [run-slow] beit

* Update inference benchmarks

* Update

* Fix - add missed to super().forward()

* Updates

* Fix missing import
2024-12-17 14:44:47 +01:00
Tony Wu
f33a0cebb3
Add ColPali to 🤗 transformers (#33736)
* feat: run `add-new-model-like`

* feat: add paligemma code with "copied from"

* feat: add ColPaliProcessor

* feat: add ColPaliModel

* feat: add ColPaliConfig

* feat: rename `ColPaliForConditionalGeneration` to `ColPaliModel`

* fixup modeling colpali

* fix: fix root import shortcuts

* fix: fix `modeling_auto` dict

* feat: comment out ColPali test file

* fix: fix typos from `add-new-model-like`

* feat: explicit the forward input args

* feat: move everything to `modular_colpali.py`

* fix: put back ColPaliProcesor

* feat: add auto-generated files

* fix: run `fix-copies`

* fix: remove DOCStRING constants to make modular converter work

* fix: fix typo + modular converter

* fix: add missing imports

* feat: no more errors when loading ColPaliModel

* fix: remove unused args in forward + tweak doc

* feat: rename `ColPaliModel` to `ColPaliForRetrieval`

* fix: apply `fix-copies`

* feat: add ColPaliProcessor to `modular_colpali`

* fix: run make quality + make style

* fix: remove duplicate line in configuration_auto

* feat: make ColPaliModel inehrit from PaliGemmaForConditionalGeneration

* fix: tweak and use ColPaliConfig

* feat: rename `score` to `post_process_retrieval`

* build: run modular formatter + make style

* feat: convert colpali weights + fixes

* feat: remove old weight converter file

* feat: add and validate tests

* feat: replace harcoded path to "vidore/colpali-v1.2-hf" in tests

* fix: add bfloat16 conversion in weight converter

* feat: replace pytest with unittest in modeling colpali test

* feat: add sanity check for weight conversion (doesn't work yet)

* feat: add shape sanity check in weigth converter

* feat: make ColPaliProcessor args explicit

* doc: add doc for ColPali

* fix: trying to fix output mismatch

* feat: tweaks

* fix: ColPaliModelOutput inherits from ModelOutput instead of PaliGemmaCausalLMOutputWithPast

* fix: address comments on PR

* fix: adapt tests to the Hf norm

* wip: try things

* feat: add `__call__` method to `ColPaliProcessor`

* feat: remove need for dummy image in `process_queries`

* build: run new modular converter

* fix: fix incorrect method override

* Fix tests, processing, modular, convert

* fix tokenization auto

* hotfix: manually fix processor -> fixme once convert modular is fixed

* fix: convert weights working

* feat: rename and improve convert weight script

* feat: tweaks

* fest: remove `device` input for `post_process_retrieval`

* refactor: remove unused `get_torch_device`

* Fix all tests

* docs: update ColPali model doc

* wip: fix convert weights to hf

* fix logging modular

* docs: add acknowledgements in model doc

* docs: add missing docstring to ColPaliProcessor

* docs: tweak

* docs: add doc for `ColPaliForRetrievalOutput.forward`

* feat: add modifications from colpali-engine v0.3.2 in ColPaliProcessor

* fix: fix and upload colapli hf weights

* refactor: rename `post_process_retrieval` to `score_retrieval`

* fix: fix wrong typing for `score_retrieval`

* test: add integration test for ColPali

* chore: rerun convert modular

* build: fix root imports

* Update docs/source/en/index.md

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* fix: address PR comments

* wip: reduce the prediction gap in weight conversion

* docs: add comment in weight conversion script

* docs: add example for `ColPaliForRetrieval.forward`

* tests: change dataset path to the new one in hf-internal

* fix: colpali weight conversion works

* test: add fine-grained check for ColPali integration test

* fix: fix typos in convert weight script

* docs: move input docstring in a variable

* fix: remove hardcoded torch device in test

* fix: run the new modular refactor

* docs: fix python example for ColPali

* feat: add option to choose `score_retrieval`'s output dtype and device

* docs: update doc for `score_retrieval`

* feat: add `patch_size` property in ColPali model

* chore: run `make fix-copies`

* docs: update description for ColPali cookbooks

* fix: remove `ignore_index` methods

* feat: remove non-transformers specific methods

* feat: update `__init__.py` to new hf format

* fix: fix root imports in transformers

* feat: remove ColPali's inheritance from PaliGemma

* Fix CI issues

* nit remove prints

* feat: remove ColPali config and model from `modular_colpali.py`

* feat: add `ColPaliPreTrainedModel` and update modeling and configuration code

* fix: fix auto-removed imports in root `__init__.py`

* fix: various fixes

* fix: fix `_init_weight`

* temp: comment `AutoModel.from_config` for experiments

* fix: add missing `output_attentions` arg in ColPali's forward

* fix: fix `resize_token_embeddings`

* fix: make `input_ids` optional in forward

* feat: rename `projection_layer` to `embedding_proj_layer`

* wip: fix convert colpali weight script

* fix tests and convert weights from original repo

* fix unprotected import

* fix unprotected torch import

* fix style

* change vlm_backbone_config to vlm_config

* fix unprotected import in modular this time

* fix: load config from Hub + tweaks in convert weight script

* docs: move example usage from model docstring to model markdown

* docs: fix input docstring for ColPali's forward method

* fix: use `sub_configs` for ColPaliConfig

* fix: remove non-needed sanity checks in weight conversion script + tweaks

* fix: fix issue with `replace_return_docstrings` in ColPali's `forward`

* docs: update docstring for `ColPaliConfig`

* test: change model path in ColPali test

* fix: fix ColPaliConfig

* fix: fix weight conversion script

* test: fix expected weights for ColPali model

* docs: update ColPali markdown

* docs: fix minor typo in ColPaliProcessor

* Fix tests and add _no_split_modules

* add text_config to colpali config

* [run slow] colpali

* move inputs to torch_device in integration test

* skip test_model_parallelism

* docs: clarify quickstart snippet in ColPali's model card

* docs: update ColPali's model card

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2024-12-17 11:26:43 +01:00
Mohamed Mekkouri
85eb339231
Fix : model used to test ggml conversion of Falcon-7b is incorrect (#35083)
fixing test model
2024-12-16 13:21:44 +01:00
Yoni Gozlan
5615a39369
Fall back to slow image processor in ImageProcessingAuto when no fast processor available (#34785)
* refactor image_processing_auto logic

* fix fast image processor tests

* Fix tests fast vit image processor

* Add safeguard when use_fast True and torchvision not available

* change default use_fast back to None, add warnings

* remove debugging print

* call get_image_processor_class_from_name once
2024-12-15 14:00:36 -05:00
Fanli Lin
bdd4201fdb
[tests] fix "Tester object has no attribute '_testMethodName'" (#34910)
* add more cases

* fix method not found in unittest

Signed-off-by: Lin, Fanli <fanli.lin@intel.com>

* fix more cases

* add more models

* add all

* no unittest.case

* remove for oneformer

* fix style

---------

Signed-off-by: Lin, Fanli <fanli.lin@intel.com>
2024-12-13 14:33:45 +01:00
nhamanasu
3d213b57fe
skip Fuyu from test_generate (#35246)
* skip Fuyu from test_generate

* make fixup, quality, repo-consistency
2024-12-13 10:12:49 +01:00
alexrs-cohere
64478c7631
Add Cohere2 model (#35224) 2024-12-13 09:35:50 +01:00
George
e4e404fdd0
Run model as compressed/uncompressed mode (#34719)
* draft, run model as compreszed/uncompressed mode

* draft

* run run_compressed=False

* run_compressed as attr

* set run_compressed=False using quantization_config

* remove redundant line

* make is_qat_trainable dependent on run_compressed status

* add tests

* lint

* full in docstring

* add decompress

* comments

* decompress if model is compresssed and not run_compressed

* apply_quant_config logic fix -- populate statedict properly

* comments

* remove non  compressed model

* make is_compressed as property

* cosmetic

* run apply_quant_config for non-compressed models -- popualte scales and zeropoints

* add pahtway for decompressing sparse models

* typo on is_quantization_compressed

* lint

* fix typo
2024-12-13 08:23:31 +01:00
Nadav Timor
e3ee49fcfb
Refactoring AssistedCandidateGenerator for Improved Modularity and Reusability (#35009)
* move `TestAssistedCandidateGeneratorDifferentTokenizers` into a new testing file

* refactor

* NOTHING. add space to rerun github actions tests

* remove it...

* NOTHING. add space to rerun github actions tests

* remove it...

* replace: `self.prev_tokens` -> `self.prev_assistant_ids`

* NOTHING. rerun CI tests

* remove it

* introduce `self.prev_target_ids_len`

* fix style

* fix style

---------

Co-authored-by: Jonathan Mamou <jonathan.mamou@intel.com>
2024-12-12 15:47:05 +01:00