* Add FlaxRoFormer
* Clean code + make quality
* Fix output pooling for FlaxRoFormerForMultipleChoiceModule
* Apply suggestions from code review
* add flax model to repos
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* Fix bad examples
* Add black formatting to style_doc
* Use first nonempty line
* Put it at the right place
* Don't add spaces to empty lines
* Better templates
* Deal with triple quotes in docstrings
* Result of style_doc
* Enable mdx treatment and fix code examples in MDXs
* Result of doc styler on doc source files
* Last fixes
* Break copy from
* Add ElectraForCausalLM and cover some basic tests & need to fix a few tests
* Fix bugs
* make style
* make fix-copies
* Update doc
* Change docstring to markdown format
* Remove redundant update_keys_to_ignore
* Pipeline chunks.
* Batching for Chunking pipelines ?
* Batching for `question-answering` and `zero-shot-cls`.
* Fixing for FNet.
* Making ASR a chunk pipeline.
* Chunking ASR API.
* doc style.
* Fixing ASR test.
* Fixing QA eror (p_mask, padding is 1, not 0).
* Enable both vad and simple chunking.
* Max length for vad.
* remove inference mode, crashing on s2t.
* Revert ChunkPipeline for ASRpipeline.
Too many knobs for simple integration within the pipeline, better stick
to external convenience functions instead, more control to be had,
simpler pipeline and also easier to replace with other things later.
* Drop necessity for PT for these.
* Enabling generators.
* Add mic + cleanup.
* Typo.
* Typo2.
* Remove ASR work, it does not belong in this PR anymore.
* Update src/transformers/pipelines/pt_utils.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Update src/transformers/pipelines/zero_shot_classification.py
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Adding many comments.
* Doc quality.
* `hidden_states` handling.
* Adding doc.
* Bad rebase.
* Autofixing docs.
* Fixing CRITICAL bug in the new Zerocls pipeline.
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* First commit to add MarianMT to ONNX
* Now MarianModel.forward() automatically generates decoder_input_ids, like BartModel.forward()
* Adjusted MarianOnnxConfig.inputs and outputs to work with seq2seq-lm feature
* Style fix
* Added support for other features for already supported models
* Partial support for causal and seq2seq models
* Partial support for causal and seq2seq models
* Add default task for MarianMT ONNX
* Remove automatic creation of decoder_input_ids
* Extend inputs and outputs for MarianMT ONNX config
* Add MarianMT to ONNX unit tests
* Refactor
* OnnxSeq2SeqConfigWithPast to support seq2seq models
* Parameterized the onnx tests
* Restored run_mlm.py
* Restored run_mlm.py
* [WIP] BART update
* BART and MBART
* Add past_key_values and fix dummy decoder inputs
Using a sequence length of 1 in generate_dummy_outputs() produces large discrepancies, presumably due to some hidden optimisations.
* Refactor MarianOnnxConfig to remove custom past_key_values logic
* Fix quality
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Refactor Marian export to account for base changes
* Fix copies
* Implemented suggestions
* Extend support for causal LM
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Revert "Revert "Added support for other features for already supported models (#14358)" (#14679)"
This reverts commit 0f4e39c559.
* is_torch_available test to avoid failing imports
* sorting parameterize parameters to solve ERROR gw0 gw1
* tests fix
* tests fix
* GPT2 with past fix
* Fixed stateful class attribute change that was breaking things when converting multiple models sequentially
* Removed onnx file
* Implemented suggestions
* Fixed __init__ to resolve conflict with master
* Remove commented import
* Remove ONNX model
* Remove redundant class method
* Tidy up imports
* Fix quality
* Refactor dummy input function
* Add copied from statements to Marian config functions
* Remove false copied from comments
* Fix copy from comment
Co-authored-by: Massimiliano Bruni <massimiliano.bruni@hcl.com>
Co-authored-by: Michael Benayoun <mickbenayoun@gmail.com>
* PoC for conserving old links
* Do the same for other links
* remap the redirects section
* add instructions on how to move sections
* improve
Co-authored-by: Stas Bekman <stas@stason.org>
* Test workflow
* Build doc
* Make a clean build
* Add doc config
* Restore other workflows
* Final job
* Print something in else statements
* Pull before making changes
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* Convert a few docs
* And another
* Last tutorials
* New syntax for colab links
* First draft
* Style and remove mlm
* Make forward pass work
* More improvements
* More improvements
* Fix bug
* More improvements
* More improvements
* Add PerceiverTokenizer first draft
* Improve conversion script
* More improvements
* Make conversion script work for the encoder
* Make conversion script work with local pickle files
* Style & quality, fix-copies
* Add dummy input to conversion script
* Add absolute position embeddings to TextPreProcessor
* Make forward pass of encoder work
* More improvements
* Move text preprocessor to separate script
* More improvements
* More improvements
* Add post processor
* Make MLM model work
* Style
* Add PerceiverForMaskedLM
* Add PerceiverImagePreprocessor
* Make style
* Make PerceiverForImageClassification work
* More improvements
* More improvements
* Use tokenizer in conversion script
* Use PerceiverForMaskedLM in conversion script
* Define custom PerceiverModelOutput
* Improve PerceiverAttention to make it work for both MLM and image classification
* More improvements
* More improvements
* More improvements to the conversion script
* Make conversion script work for both MLM and image classification
* Add PerceiverFeatureExtractor
* More improvements
* Style and quality
* Add center cropping
* Fix bug
* Small fix
* Add print statement
* Fix bug in image preprocessor
* Fix bug with conversion script
* Make output position embeddings an nn.Parameter layer instead of nn.Embedding
* Comment out print statements
* Add position encoding classes
* More improvements
* Use position_encoding_kwargs
* Add PerceiverForImageClassificationFourier
* Make style & quality
* Add PerceiverForImageClassificationConvProcessing
* Style & quality
* Add flow model
* Move processors to modeling file
* Make position encodings modular
* Make basic decoder use modular position encodings
* Add PerceiverForOpticalFlow to conversion script
* Add AudioPreprocessor
* Make it possible for the basic decoder to use Fourier position embeddings
* Add PerceiverForMultimodalAutoencoding
* Improve model for optical flow
* Improve _build_network_inputs method
* Add print statement
* Fix device issue
* Fix device of Fourier embeddings
* Add print statements for debugging
* Add another print statement
* Add another print statement
* Add another print statement
* Add another print statement
* Improve PerceiverAudioPreprocessor
* Improve conversion script for multimodal modal
* More improvements
* More improvements
* Improve multimodal model
* Make forward pass multimodal model work
* More improvements
* Improve tests
* Fix some more tests
* Add output dataclasses
* Make more tests pass
* Add print statements for debuggin
* Add tests for image classification
* Add PerceiverClassifierOutput
* More improvements
* Make more tests pass for the optical flow model
* Make style & quality
* Small improvements
* Don't support training for optical flow model for now
* Fix _prepare_for_class for tests
* Make more tests pass, add some docs
* Add multimodal model to tests
* Minor fixes
* Fix tests
* Improve conversion script
* Make fixup
* Remove pos_dim argument
* Fix device issue
* Potential fix for OOM
* Revert previous commit
* Fix test_initialization
* Add print statements for debugging
* Fix print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Add print statement
* Remove need for output_shape
* Comment out output_shape
* Remove unnecessary code
* Improve docs
* Fix make fixup
* Remove PerceiverTextProcessor from init
* Improve docs
* Small improvement
* Apply first batch of suggestions from code review
* Apply more suggestions from code review
* Update docstrings
* Define dicts beforehand for readability
* Rename task to architecture in conversion script, include PerceiverModel in tests
* Add print statements for debugging
* Fix tests on GPU
* Remove preprocessors, postprocessors and decoders from main init
* Add integration test
* Fix docs
* Replace einops by torch
* Update for new docs frontend
* Rename PerceiverForImageClassification
* Improve docs
* Improve docs
* Improve docs of PerceiverModel
* Fix some more tests
* Improve center_crop
* Add PerceiverForSequenceClassification
* Small improvements
* Fix tests
* Add integration test for optical flow model
* Clean up
* Add tests for tokenizer
* Fix tokenizer by adding special tokens properly
* Fix CI
* up
* up
* up
* make it cleaner
* correct
* make styhahalal
* add more tests
* finish
* small fix
* make style
* up
* tryout to solve cicrle ci
* up
* fix more tests
* fix more tests
* apply sylvains suggestions
* fix import
* correct docs
* add pyctcdecode only to speech tests
* fix more tests
* add tf, flax and pt tests
* add pt
* fix last tests
* fix more tests
* Apply suggestions from code review
* change lines
* Apply suggestions from code review
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* correct tests
* correct tests
* add doc string
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
* implement MLukeTokenizer and LukeForMaskedLM
* update tests
* update docs
* add LukeForMaskedLM to check_repo.py
* update README
* fix test and specify the entity pad id in tokenization_(m)luke
* fix EntityPredictionHeadTransform
* Make DefaultDataCollator importable from root
* Add documentation for DefaultDataCollator and add return_tensors argument to all class docstrings
* make style
* Add DefaultDataCollator to data_collator.rst
* Add DefaultDataCollator to data_collator.rst
* Init Flax implementation for Blenderbot
* Add a majority of stuff except for tests
* make style quality
* Add tests and fix some bugs
* Add tests
* Clean source code and fix some bugs
* Fix copies and docs
* Fix jax device condition for tests
* Fix layer norm in the encoder
* Fix a few typos in the test file
* make fix-copies
* make fix-copies
* fix layer norm
* Fix Flax params dtype (#13090)
* Fix PR reference (#13098)
* make fix-copies
* Update tests/test_modeling_flax_blenderbot.py
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
* TF Tapas first commit
* updated docs
* updated logger message
* updated pytorch weight conversion
script to support scalar array
* added use_cache to tapas model config to
work properly with tf input_processing
* 1. rm embeddings_sum
2. added # Copied
3. + TFTapasMLMHead
4. and lot other small fixes
* updated docs
* + test for tapas
* updated testing_utils to check
is_tensorflow_probability_available
* converted model logits post processing using
numpy to work with both PT and TF models
* + TFAutoModelForTableQuestionAnswering
* added TF support
* added test for
TFAutoModelForTableQuestionAnswering
* added test for
TFAutoModelForTableQuestionAnswering pipeline
* updated auto model docs
* fixed typo in import
* added tensorflow_probability to run tests
* updated MLM head
* updated tapas.rst with TF model docs
* fixed optimizer import in docs
* updated convert to np
data from pt model is not
`transformers.tokenization_utils_base.BatchEncoding`
after pipeline upgrade
* updated pipeline:
1. with torch.no_gard removed, pipeline forward handles
2. token_type_ids converted to numpy
* updated docs.
* removed `use_cache` from config
* removed floats_tensor
* updated code comment
* updated Copyright Year and
logits_aggregation Optional
* updated docs and comments
* updated docstring
* fixed model weight loading
* make fixup
* fix indentation
* added tf slow pipeline test
* pip upgrade
* upgrade python to 3.7
* removed from_pt from tests
* revert commit f18cfa9
* added save_directories for _psave_pretrained_pt and _tf, changed model to tf_model and pt_model, enable the notebook to run cleanly from top to bottom without error
* Update quicktour.rst
* added >>>
* dependencies
* added space
* [deepspeed] zero inference
* only z3 makes sense for inference
* fix and style
* docs
* rework
* fix test
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* responding to suggestions
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Start the work for TFViTModel
* Convert to TF code - need to check in the follow up commits
* Clean up model code
* Expose TFViTModel
* make style
* make quality
* Add test
* make style & quality
* Fix some imports
* fix wrong usage - *kwargs => ** kwargs
* Fix Conv2D weight loading (PT->TF) issue
* Add tests for images with different sizes + fix model
* Fix some common tests for TFViTModel
* Use inputs instead of input_ids in test_compile_tf_model
* Add a comment about transpose and Conv2D in convert_tf_weight_name_to_pt_weight_name
* Avoid transpose in TFViT call
* Fix Conv2D issue in load_tf2_weights_in_pytorch_model
* Use tf.keras.layers.Conv2D instead of tf.nn.conv2d
* Using simpler heuristic to detect Conv2D layer
* Change convert_tf_weight_name_to_pt_weight_name to return TransposeType
* Check tf_weight_shape is not None before using it
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* fix missing comma
* fix input dtype
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* Start PR doc
* Cleanup the quality checks and document them
* Add reference in the contributing guide
* Apply suggestions from code review
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* Rename file as per review suggestion
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
* add Beit model ouput class
* inherting from BaseModelOuputWithPooling
* updated docs if use_mean_pooling is False
* added beit specific outputs in model docs
* changed the import path
* Fix docs
Co-authored-by: Niels Rogge <niels.rogge1@gmail.com>