Commit Graph

9 Commits

Author SHA1 Message Date
cyyever
1e6b546ea6
Use Python 3.9 syntax in tests (#37343)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-08 14:12:08 +02:00
Tom Aarsen
897ff9af0e
[ModernBERT] Never save 'reference_compile' config; should be set based on end user (#36305)
* Never save 'reference_compile' config; should be set based on end user

* Reformat (I ran 'make style' from the wrong env)

* Use pop instead of del

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

* Use pop instead of del

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>

---------

Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2025-04-01 14:14:39 +02:00
Abu Bakr Soliman
49b5ab6a27
Support QuestionAnswering Module for ModernBert based models. (#35566)
* push ModernBertForQuestionAnswering

* update ModernBertForQuestionAnswering

* update __init__ loading

* set imports for ModernBertForQuestionAnswering

* update ModernBertForQuestionAnswering

* remove debugging logs

* update init_weights method

* remove custom initialization for ModernBertForQuestionAnswering

* apply make fix-copies

* apply make style

* apply make fix-copies

* append ModernBertForQuestionAnswering to the pipeline supported models

* remove unused file

* remove invalid autoload value

* update en/model_doc/modernbert.md

* apply make fixup command

* make fixup

* Update dummies

* update usage tips for ModernBertForQuestionAnswering

* update usage tips for ModernBertForQuestionAnswering

* add init

* add lint

* add consistency

* update init test

* change text to trigger stuck text

* use self.loss_function instead of custom loss

By @Cyrilvallez

Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>

* Update modeling_modernbert.py

make comparable commit to even it out

* Match whitespace

* whitespace

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Orion Weller <wellerorion@gmail.com>
Co-authored-by: Orion Weller <31665361+orionw@users.noreply.github.com>
Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
2025-03-26 21:24:18 +01:00
Joao Gante
678885bbbd
[CI] Check test if the GenerationTesterMixin inheritance is correct 🐛 🔫 (#36180) 2025-02-21 10:18:20 +00:00
Joao Gante
62c7ea0201
CI: avoid human error, automatically infer generative models (#33212)
* tmp commit

* move tests to the right class

* remove ALL all_generative_model_classes = ...

* skip tf roberta

* skip InstructBlipForConditionalGenerationDecoderOnlyTest

* videollava

* reduce diff

* reduce diff

* remove  on vlms

* fix a few more

* manual rebase bits

* more manual rebase

* remove all manual generative model class test entries

* fix up to ernie

* a few more removals

* handle remaining cases

* recurrent gemma

* it's better here

* make fixup

* tf idefics is broken

* tf bert + generate is broken

* don't touch tf :()

* don't touch tf :(

* make fixup

* better comments for test skips

* revert tf changes

* remove empty line removal

* one more

* missing one
2025-02-13 16:27:11 +01:00
Arthur
b912f5ee43
use torch.testing.assertclose instead to get more details about error in cis (#35659)
* use torch.testing.assertclose instead to get more details about error in cis

* fix

* style

* test_all

* revert for I bert

* fixes and updates

* more image processing fixes

* more image processors

* fix mamba and co

* style

* less strick

* ok I won't be strict

* skip and be done

* up
2025-01-24 16:55:28 +01:00
Tom Aarsen
6b73ee8905
ModernBert: reuse GemmaRotaryEmbedding via modular + Integration tests (#35459)
* Introduce 5 integration tests for the 4 model classes + torch export

* ModernBert: reuse GemmaRotaryEmbedding via modular

* Revert #35589, keep rope_kwargs; rely on them in modular_modernbert

* Revert "Revert #35589, keep rope_kwargs; rely on them in modular_modernbert"

This reverts commit 11b44b9ee8.

* Don't set rope_kwargs; override 'self.rope_init_fn' call instead
2025-01-10 10:25:10 +01:00
Jack Morris
832c6191ed
Add inputs_embeds param to ModernBertModel (#35373)
* update modular_modernbert -- add inputs_embeds param to ModernBertModel

* Fix implementation issues; extend to other classes; docstring

First of all, the inputs_embeds shouldn't fully replace `self.embeddings(input_ids)`, because this call also does layer normalization and dropout. So, now both input_ids and inputs_embeds is passed to the ModernBertEmbeddings, much like how BertEmbeddings is implemented.

I also added `inputs_embeds` to the docstring, and propagated the changes to the other model classes.

I also introduced an error if input_ids and input_embeds are both or neither provided.

Lastly, I fixed an issue with device being based solely on input_ids with attention_mask.

* Propagate inputs_embeds to ModernBertForMaskedLM correctly

Also reintroduce inputs_embeds test

---------

Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
2025-01-09 14:17:26 +01:00
Benjamin Warner
667ed5635e
Add ModernBERT to Transformers (#35158)
* initial cut of modernbert for transformers

* small bug fixes

* fixes

* Update import

* Use compiled mlp->mlp_norm to match research implementation

* Propagate changes in modular to modeling

* Replace duplicate attn_out_dropout in favor of attention_dropout

cc @warner-benjamin let me know if the two should remain separate!

* Update BOS to CLS and EOS to SEP

Please confirm @warner-benjamin

* Set default classifier bias to False, matching research repo

* Update tie_word_embeddings description

* Fix _init_weights for ForMaskedLM

* Match base_model_prefix

* Add compiled_head to match research repo outputs

* Fix imports for ModernBertForMaskedLM

* Just use "gelu" default outright for classifier

* Fix config name typo: initalizer -> initializer

* Remove some unused parameters in docstring. Still lots to edit there!

* Compile the embeddings forward

Not having this resulted in very slight differences - so small it wasn't even noticed for the base model, only for the large model.

But the tiny difference for large propagated at the embedding layer through the rest of the model, leading to notable differences of ~0.0084 average per value, up to 0.2343 for the worst case.

* Add drafts for ForSequenceClassification/ForTokenClassification

* Add initial SDPA support (not exactly equivalent to FA2 yet!)

During testing, FA2 and SDPA still differ by about 0.0098 per value in the token embeddings. It still predicts the correct mask fills, but I'd like to get it fully 1-1 if possible.

* Only use attention dropout if training

* Add initial eager attention support (also not equivalent to FA2 yet!)

Frustratingly, I also can't get eager to be equivalent to FA2 (or sdpa), but it does get really close, i.e. avg ~0.010 difference per value.

Especially if I use fp32 for both FA2&eager, avg ~0.0029 difference per value

The fill-mask results are good with eager.

* Add initial tests, output_attentions, output_hidden_states, prune_heads

Tests are based on BERT, not all tests pass yet: 23 failed, 79 passed, 100 skipped

* Remove kwargs from ModernBertForMaskedLM

Disable sparse_prediction by default to match the normal HF, can be enabled via config

* Remove/adjust/skip improper tests; warn if padding but no attn mask

* Run formatting etc.

* Run python utils/custom_init_isort.py

* FlexAttention with unpadded sequences(matches FA2 within bf16 numerics)

* Reformat init_weights based on review

* self -> module in attention forwards

* Remove if config.tie_word_embeddings

* Reformat output projection on a different line

* Remove pruning

* Remove assert

* Call contiguous() to simplify paths

* Remove prune_qkv_linear_layer

* Format code

* Keep as kwargs, only use if needed

* Remove unused codepaths & related config options

* Remove 3d attn_mask test; fix token classification tuple output

* Reorder: attention_mask above position_ids, fixes gradient checkpointing

* Fix usage if no FA2 or torch v2.5+

* Make torch.compile/triton optional

Should we rename 'compile'? It's a bit vague

* Separate pooling options into separate functions (cls, mean) - cls as default

* Simplify _pad_modernbert_output, remove unused labels path

* Update tied weights to remove decoder.weight, simplify decoder loading

* Adaptively set config.compile based on hf_device_map/device/resize, etc.

* Update ModernBertConfig docstring

* Satisfy some consistency checks, add unfinished docs

* Only set compile to False if there's more than 1 device

* Add docstrings for public ModernBert classes

* Dont replace docstring returns - ends up being duplicate

* Fix mistake in toctree

* Reformat toctree

* Patched FlexAttention, SDPA, Eager with Local Attention

* Implement FA2 -> SDPA -> Eager attn_impl defaulting, crucial

both to match the original performance, and to get the highest inference speed without requiring users to manually pick FA2

* Patch test edge case with Idefics3 not working with 'attn_implementation="sdpa"'

* Repad all_hidden_states as well

* rename config.compile to reference_compile

* disable flex_attention since it crashes

* Update modernbert.md

* Using dtype min to mask in eager

* Fully remove flex attention for now

It's only compatible with the nightly torch 2.6, so we'll leave it be for now. It's also slower than eager/sdpa.

Also, update compile -> reference_compile in one more case

* Call contiguous to allow for .view()

* Copyright 2020 -> 2024

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update/simplify __init__ structure

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Remove "... if dropout_prob > 0 else identity"

As dropout with 0.0 should be efficient like identity

* re-use existing pad/unpad functions instead of creating new ones

* remove flexattention method

* Compute attention_mask and local_attention_mask once in modeling

* Simplify sequence classification prediction heads, only CLS now

Users can make custom heads if they feel like it

Also removes the unnecessary pool parameter

* Simplify module.training in eager attn

* Also export ModernBertPreTrainedModel

* Update the documentation with links to finetuning scripts

* Explain local_attention_mask parameter in docstring

* Simplify _autoset_attn_implementation, rely on super()

* Keep "in" to initialize Prediction head

Doublechecked with Benjamin that it's correct/what we used for pretraining

* add back mean pooling

* Use the pooling head in TokenClassification

* update copyright

* Reset config._attn_implementation_internal on failure

* Allow optional attention_mask in ForMaskedLM head

* fix failing run_slow tests

* Add links to the paper

* Remove unpad_no_grad, always pad/unpad without gradients

* local_attention_mask -> sliding_window_mask

* Revert "Use the pooling head in TokenClassification"

This reverts commit 99c38badd1.

There was no real motivation, no info on whether having this bigger head does anything useful.

* Simplify pooling, 2 options via if-else

---------

Co-authored-by: Tom Aarsen <37621491+tomaarsen@users.noreply.github.com>
Co-authored-by: Tom Aarsen <Cubiegamedev@gmail.com>
Co-authored-by: Said Taghadouini <taghadouinisaid@gmail.com>
Co-authored-by: Benjamin Clavié <ben@clavie.eu>
Co-authored-by: Antoine Chaffin <ant54600@hotmail.fr>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2024-12-19 14:03:35 +01:00