* Added is_fast property on BatchEncoding to indicate if the object comes from a Fast Tokenizer.
* Added __get_state__() & __set_state__() to be pickable.
* Correct tokens() return type from List[int] to List[str]
* Added unittest for BatchEncoding pickle/unpickle
* Added unittest for BatchEncoding is_fast
* More careful checking on BatchEncoding unpickle tests.
* Formatting.
* is_fast should assertTrue on Rust tokenizers.
* Ensure tensorflow has correct way of checking array_equal
* More formatting.
* Update hans data to be able to use Trainer
* Fixes
* Deal with tokenizer that don't have token_ids
* Clean up things
* Simplify data use
* Fix the input dict
* Formatting + proper path in README
* Fixed resize_token_embeddings for transfo_xl model
* Fixed resize_token_embeddings for transfo_xl.
Added custom methods to TransfoXLPreTrainedModel for resizing layers of
the AdaptiveEmbedding.
* Updated docstring
* Fixed resizinhg cutoffs; added check for new size of embedding layer.
* Added test for resize_token_embeddings
* Fixed code quality
* Fixed unchanged cutoffs in model.config
Co-authored-by: Rafael Weingartner <rweingartner.its-b2015@fh-salzburg.ac.at>
* check type before logging to ensure it's a scalar
* log when Trainer attempts to add a non-scalar value using TensorboardX's writer.add_scalar so we know what kinds of fixes are appropriate
* black it
* rephrase log message to clarify attribute was dropped
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* ElectraForQuestionAnswering
* udate __init__
* add test for electra qa model
* add ElectraForQuestionAnswering in auto models
* add ElectraForQuestionAnswering in all_model_classes
* fix outputs, input_ids defaults to None
* add ElectraForQuestionAnswering in docs
* remove commented line
* DOC: Replace instances of ``config.output_attentions`` with function argument ``output_attentions``
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* Fix further regressions in tests relating to `output_attentions`
Ensure proper propagation of `output_attentions` as a function parameter
to all model subclasses
* Fix more regressions in `test_output_attentions`
* Fix issues with BertEncoder
* Rename related variables to `output_attentions`
* fix pytorch tests
* fix bert and gpt2 tf
* Fix most TF tests for `test_output_attentions`
* Fix linter errors and more TF tests
* fix conflicts
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix pytorch tests
* fix conflicts
* fix conflicts
* Fix linter errors and more TF tests
* fix tf tests
* make style
* fix isort
* improve output_attentions
* improve tensorflow
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add tpu and torchscipt for benchmark
* fix name in tests
* "fix email"
* make style
* better log message for tpu
* add more print and info for tpu
* allow possibility to print tpu metrics
* correct cpu usage
* fix test for non-install
* remove bugus file
* include psutil in testing
* run a couple of times before tracing in torchscript
* do not allow tpu memory tracing for now
* make style
* add torchscript to env
* better name for torch tpu
Co-authored-by: Patrick von Platen <patrick@huggingface.co>