* Port core files + ESM (because ESM code is odd)
* Search-replace in modelling code
* Fix up transfo_xl as well
* Fix other core files + tests (still need to add correct import to tests)
* Fix cookiecutter
* make fixup, fix imports in some more core files
* Auto-add imports to tests
* Cleanup, add imports to sagemaker tests
* Use correct exception for importing tf_keras
* Fixes in modeling_tf_utils
* make fixup
* Correct version parsing code
* Ensure the pipeline tests correctly revert to float32 after each test
* Ensure the pipeline tests correctly revert to float32 after each test
* More tf.keras -> keras
* Add dtype cast
* Better imports of tf_keras
* Add a cast for tf.assign, just in case
* Fix callback imports
* Fix vision text dual encoder
* Small cleanup for wav2vec2 (not fixed yet)
* Small fix for vision_encoder_decoder
* Fix SAM builds
* Update TFBertTokenizer test with modern exporting + tokenizer
* Fix DeBERTa
* Fix DeBERTav2
* Try RAG fix but it's impossible to test locally
* Actually fix RAG now that I got FAISS working somehow
* Fix Wav2Vec2, add sermon
* Fix Hubert
* fix: Apostraphe splitting in the BasicTokenizer for CLIPTokenizer
* account for apostrophe at start of new word
* remove _run_split_on_punc, use re.findall instead
* remove debugging, make style and quality
* use pattern and punc splitting, repo-consistency will fail
* remove commented out debugging
* adds bool args to BasicTokenizer, remove pattern
* do_split_on_punc default True
* clean stray comments and line breaks
* rebase, repo-consistency
* update to just do punctuation split
* add unicode normalizing back
* remove redundant line
* hidden layers, huh, what are they good for (absolutely nothing)
* Some tests break with 1 hidden layer, use 2
* Use 1 hidden layer in a few slow models
* Use num_hidden_layers=2 everywhere
* Slightly higher tol for groupvit
* Slightly higher tol for groupvit
* Adding warning messages to BERT for missing attention masks
These warning messages when there are pad tokens within the input ids and
no attention masks are given. The warning message should only show up once.
* Adding warning messages to BERT for missing attention masks
These warning messages are shown when the pad_token_id is not None
and no attention masks are given. The warning message should only
show up once.
* Ran fix copies to copy over the changes to some of the other models
* Add logger.warning_once.cache_clear() to the test
* Shows warning when there are no attention masks and input_ids start/end with pad tokens
* Using warning_once() instead and fix indexing in input_ids check
---------
Co-authored-by: JB Lau <hckyn@voyager2.local>
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Rework TF type hints to use | None instead of Optional[] for tf.Tensor
* Don't forget the imports
* Add the imports to tests too
* make fixup
* Refactor tests that depended on get_type_hints
* Better test refactor
* Fix an old hidden bug in the test_keras_fit input creation code
* Fix for the Deit tests
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
* update relative positional embedding
* make fix copies
* add `use_cache` to list of arguments
* fixup
* 1line fucntion
* add `test_decoder_model_past_with_large_inputs_relative_pos_emb`
* add relative pos embedding test for more models
* style
* move generation_*.py src files into generation/*.py
* populate generation.__init__ with lazy loading
* move imports and references from generation.xxx.object to generation.object
* add suport for non fast tf bert tokenizer
* add tests for non fast tf bert tokenizer
* fix fast bert tf tokenizer flag
* double tokenizers list on tf tokenizers test to aovid breaking zip on test output equivalence
* reformat code with black to comply with code quality checks
* trigger ci
* Add a TF in-graph tokenizer for BERT
* Add from_pretrained
* Add proper truncation, option handling to match other tokenizers
* Add proper imports and guards
* Add test, fix all the bugs exposed by said test
* Fix truncation of paired texts in graph mode, more test updates
* Small fixes, add a (very careful) test for savedmodel
* Add tensorflow-text dependency, make fixup
* Update documentation
* Update documentation
* make fixup
* Slight changes to tests
* Add some docstring examples
* Update tests
* Update tests and add proper lowercasing/normalization
* make fixup
* Add docstring for padding!
* Mark slow tests
* make fixup
* Fall back to BertTokenizerFast if BertTokenizer is unavailable
* Fall back to BertTokenizerFast if BertTokenizer is unavailable
* make fixup
* Properly handle tensorflow-text dummies