* Update methods to optionally rescale
This is necessary to allow for casting our images / videos to numpy arrays within the feature extractors' call. We want to do this to make sure the behaviour is as expected when flags like are False. If some transformations aren't applied, then the output type can't be unexpected e.g. a list of PIL images instead of numpy arrays.
* Cast images to numpy arrays in call to enable consistent behaviour with different configs
* Remove accidental clip changes
* Update tests to reflect the scaling logic
We write a generic function to handle rescaling of our arrays. In order for the API to be intuitive, we take some factor c and rescale the image values by that. This means, the rescaling done in normalize and to_numpy_array are now done with array * (1/255) instead of array / 255. This leads to small differences in the resulting image. When testing, this was in the order of 1e-8, and so deemed OK
* Add serving_output and serving methods to some vision models
* Add serving outputs for DeiT
* Don't convert hidden states - differing shapes
* Make saveable
* Fix up
* Make swin saveable
* Add in tests
* Fix funnel tests (can't convert to tensor)
* Fix numpy call
* Tidy up a bit
* Add in hidden states - resnet
* Remove numpy
* Fix failing tests - tensor shape and skipping tests
* Remove duplicated function
* PR comments - formatting and var names
* PR comments
Add suggestions made by Joao Gante:
* Use tf.shape instead of shape_list
* Use @tooslow decorator on tests
* Simplify some of the logic
* PR comments
Address Yih-Dar Sheih comments - making tensor names consistent and make types float
* Types consistent with docs; disable test on swin (slow)
* CI trigger
* Change input_features to float32
* Add serving_output for segformer
* Fixup
Co-authored-by: Amy Roberts <amyeroberts@users.noreply.github.com>
* Copy inputs to train and test step before modifying them, as this breaks things
* Add XLA tests, fix our loss functions to be XLA-compatible
* make fixup
* Update loss computation test to expect vector of per-sample losses
* Patch loss for TFLED
* Patch loss for TFAlbert
* Add a tf_legacy_loss config flag that enables old loss functions
* Stop using config.get() because it's not a dict
* Skip loss computation test for RAG because its loss is very strange and I'm afraid to rewrite it
* make fixup
* Add XLA-compatible RAG loss
* Fix dtype of loss mask for TFAlbert
* Fix test for XLNet too because it overrides the default one
* make fixup
* Fix config test
* No more depending on GPU NaN behaviour
* Add test, avoid potential zero division
* Fix test item assignment
* Fix loss computation masking test
* make fixup
* Fix dtype bugs
* Raise RepoNotFoundError in case of 401
* Include changes from revert-17646-skip_repo_not_found
* Add a comment
* 💄 Code quality
* 💚 Update `get_from_cache` test
* 💚 Code quality & skip failing test
* add support for MLFLOW_FLATTEN_PARAMS
* ensure key is str
* fix style and update warning msg
* Empty commit to trigger CI
* fix bug in check_inits.py
* add unittest for flatten_dict utils
* fix 'NoneType' object is not callable on __del__
* add generic flatten_dict unittest to SPECIAL_MODULE_TO_TEST_MAP
* fix style
* update proto sentencepiece model
* Revert "update proto sentencepiece model"
This reverts commit b07f671747.
* add check
* add test
* Revert "Revert "update proto sentencepiece model""
This reverts commit 46108257b8.
* test for log level
* test for log level 2
* warning at the warning level
* clean
* format
* add explanation in docstring
* Add utility to find model labels
* Use it in the Trainer
* Update src/transformers/utils/generic.py
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Quality
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
* Make Transformers use cache files when hf.co is down
* Fix tests
* Was there a random circleCI failure?
* Isolate patches
* Style
* Comment out the failure since it doesn't fail anymore
* Better comment
* Split file_utils in several submodules
* Fixes
* Add back more objects
* More fixes
* Who exactly decided to import that from there?
* Second suggestion to code with code review
* Revert wront move
* Fix imports
* Adapt all imports
* Adapt all imports everywhere
* Revert this import, will fix in a separate commit
* Updates the default branch from master to main
* Links from `master` to `main`
* Typo
* Update examples/flax/README.md
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>