* Mark pipeline tests to skip them easily
* Mark the mixin as pipeline test
* Update src/transformers/testing_utils.py
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
---------
Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
* Result of black 23.1
* Update target to Python 3.7
* Switch flake8 to ruff
* Configure isort
* Configure isort
* Apply isort with line limit
* Put the right black version
* adapt black in check copies
* Fix copies
* Fixing the pipeline with image processor.
* Update the slow test.
* Using only the first image processor.
* Include exclusion mecanism for Image processor.
* Do not handle Gitconfig, deemed as a bug.
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Remove `conversational` changes. They are not supposed to be here.
* Address first row of comments.
* Remove OneFormer modifications.
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* [Proposal] Breaking change `zero-shot-object-detection` for improved
consistency.
This is a proposal to modify the output of `zero-shot-object-detection`
to provide better alignment with other pipelines.
The output is now strictly the same as `object-detection` whereas before
it would output lists of lists.
The name `candidate_labels` is used throughout for consistency with
other `zero-shot` pipelines.
The pipeline is changed to `ChunkPipeline` to support batching cleanly.
This removes all the lists and list of lists shenanigans, it's now a
matter of the base pipeline handling all this not this specific one.
**Breaking change**: It did remove complex calls potentials `pipe(images = [image1, image2],
text_queries=[candidates1, candidates2])` to support only
`pipe([{"image": image1, "candidate_labels": candidates1}, {"image": image2, "candidate_labels": candidates2}])`
when dealing with lists and/or datasets.
We could keep them, but it will add a lot of complexity to the code
base, since the pipeline is rather young, I'd rather break to keep the
code simpler, but we can revert this.
**Breaking change**: The name of the argument is now `image` instead of
`images` since it expects by default only 1 image. This is revertable
like the previous one.
**Breaking change**: The types is now simplified and flattened:
`pipe(inputs) == [{**object1}, {**object2}]`
instead of the previous
`pipe(inputs) == [[{**object1}, {**object1}], [{**object2}]]`
Where the different instances would be grouped by candidate labels
within lists.
IMHO this is not really desirable, since it would output empty lists and
is only adding superflous indirection compared to
`zero-shot-object-detection`.
It is relatively change free in terms of how the results, it does change
computation however since now the batching is handled by the pipeline
itself. It **did** change the results for the small models so there
seems to be a real difference in how the models handle this.
* Fixing the doctests.
* Behind is_torch_available.
* Add ZeroShotObjectDetectionPipeline (#18445)
* Add AutoModelForZeroShotObjectDetection task
This commit also adds the following
- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
This is necessary as pipelines don't auto infer processors yet and
`OwlVitProcessor` wraps tokenizer and feature_extractor together, to
process multiple images at once
- Add auto tests and other tests for ZeroShotObjectDetectionPipeline
* Add AutoModelForZeroShotObjectDetection task
This commit also adds the following
- Add explicit _processor method for ZeroShotObjectDetectionPipeline.
This is necessary as pipelines don't auto infer processors yet and
`OwlVitProcessor` wraps tokenizer and feature_extractor together, to
process multiple images at once
- Add auto tests and other tests for ZeroShotObjectDetectionPipeline
* Add batching for ZeroShotObjectDetectionPipeline
* Fix doc-string ZeroShotObjectDetectionPipeline
* Fix output format: ZeroShotObjectDetectionPipeline