* Add model skeletion with transformers-cli add-new-model-like
* Convert config to modular, add rms_norm_eps, delete clip_qkv
* Convert model to modular, add RMSNorm
* Add flash attention with qk norm and no qkv clipping
* Add decoder layer with RMSNorm after attention/feedforward layers
* Add base and causal model
* Add converter improvements from OLMo repo
* Update weight loading in OLMo to HF converter
* Set correct default for rms_norm_eps
* Set correct pipeline_model_mapping in test
* Run make fixup
* Fix model type
* Re-run modular conversion
* Manually set config docs to fix build errors
* Convert olmo-1124 to olmo_1124 to fix flash attention docs errors
* Start updating tests
* Update tests
* Copy upstream test_eager_matches_sdpa_inference_1_bfloat16 changes to olmo_1124
* Rename input_layernorm and post_attention_layernorm to reflect their ops better
* Use correct tokenizer
* Remove test unsupported by GPT2 tokenizer
* Create GenerationConfig outside of from_pretrained call
* Use simpler init file structure
* Add explicit __all__ to support simplified init
* Make safetensor serialization the default
* Update OLMo November 2024 docs