* fix#5081 and improve backward compatibility (slightly)
* add nlp to setup.cfg - style and quality
* align default to previous default
* remove test that doesn't generalize
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Configure all models to use output_hidden_states as argument passed to foward()
* Pass all tests
* Remove cast_bool_to_primitive in TF Flaubert model
* correct tf xlnet
* add pytorch test
* add tf test
* Fix broken tests
* Refactor output_hidden_states for mobilebert
* Reset and remerge to master
Co-authored-by: Joseph Liu <joseph.liu@coinflex.com>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
* Fixed resize_token_embeddings for transfo_xl model
* Fixed resize_token_embeddings for transfo_xl.
Added custom methods to TransfoXLPreTrainedModel for resizing layers of
the AdaptiveEmbedding.
* Updated docstring
* Fixed resizinhg cutoffs; added check for new size of embedding layer.
* Added test for resize_token_embeddings
* Fixed code quality
* Fixed unchanged cutoffs in model.config
* Added feature to move added tokens in tokenizer.
* Fixed code quality
* Added feature to move added tokens in tokenizer.
* Fixed code quality
* Fixed docstring, renamed sym to oken.
Co-authored-by: Rafael Weingartner <rweingartner.its-b2015@fh-salzburg.ac.at>
* add ElectraForMultipleChoice
* add test_for_multiple_choice
* add ElectraForMultipleChoice in auto model
* add ElectraForMultipleChoice in all_model_classes
* add SequenceSummary related parameters
* get rid pooler, use SequenceSummary instead
* add electra multiple choice test
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
* Added is_fast property on BatchEncoding to indicate if the object comes from a Fast Tokenizer.
* Added __get_state__() & __set_state__() to be pickable.
* Correct tokens() return type from List[int] to List[str]
* Added unittest for BatchEncoding pickle/unpickle
* Added unittest for BatchEncoding is_fast
* More careful checking on BatchEncoding unpickle tests.
* Formatting.
* is_fast should assertTrue on Rust tokenizers.
* Ensure tensorflow has correct way of checking array_equal
* More formatting.
* Fixed resize_token_embeddings for transfo_xl model
* Fixed resize_token_embeddings for transfo_xl.
Added custom methods to TransfoXLPreTrainedModel for resizing layers of
the AdaptiveEmbedding.
* Updated docstring
* Fixed resizinhg cutoffs; added check for new size of embedding layer.
* Added test for resize_token_embeddings
* Fixed code quality
* Fixed unchanged cutoffs in model.config
Co-authored-by: Rafael Weingartner <rweingartner.its-b2015@fh-salzburg.ac.at>
* ElectraForQuestionAnswering
* udate __init__
* add test for electra qa model
* add ElectraForQuestionAnswering in auto models
* add ElectraForQuestionAnswering in all_model_classes
* fix outputs, input_ids defaults to None
* add ElectraForQuestionAnswering in docs
* remove commented line
* DOC: Replace instances of ``config.output_attentions`` with function argument ``output_attentions``
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* Fix further regressions in tests relating to `output_attentions`
Ensure proper propagation of `output_attentions` as a function parameter
to all model subclasses
* Fix more regressions in `test_output_attentions`
* Fix issues with BertEncoder
* Rename related variables to `output_attentions`
* fix pytorch tests
* fix bert and gpt2 tf
* Fix most TF tests for `test_output_attentions`
* Fix linter errors and more TF tests
* fix conflicts
* DOC: Apply Black Formatting
* Fix errors where output_attentions was undefined
* Remove output_attentions in classes per review
* Fix regressions on tests having `output_attention`
* fix conflicts
* fix conflicts
* fix conflicts
* fix conflicts
* fix pytorch tests
* fix conflicts
* fix conflicts
* Fix linter errors and more TF tests
* fix tf tests
* make style
* fix isort
* improve output_attentions
* improve tensorflow
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
* add tpu and torchscipt for benchmark
* fix name in tests
* "fix email"
* make style
* better log message for tpu
* add more print and info for tpu
* allow possibility to print tpu metrics
* correct cpu usage
* fix test for non-install
* remove bugus file
* include psutil in testing
* run a couple of times before tracing in torchscript
* do not allow tpu memory tracing for now
* make style
* add torchscript to env
* better name for torch tpu
Co-authored-by: Patrick von Platen <patrick@huggingface.co>
* Better None gradients handling
* Apply Style
* Apply Style
* Create a loss class per task to compute its respective loss
* Add loss classes to the ALBERT TF models
* Add loss classes to the BERT TF models
* Add question answering and multiple choice to TF Camembert
* Remove prints
* Add multiple choice model to TF DistilBERT + loss computation
* Add question answering model to TF Electra + loss computation
* Add token classification, question answering and multiple choice models to TF Flaubert
* Add multiple choice model to TF Roberta + loss computation
* Add multiple choice model to TF XLM + loss computation
* Add multiple choice and question answering models to TF XLM-Roberta
* Add multiple choice model to TF XLNet + loss computation
* Remove unused parameters
* Add task loss classes
* Reorder TF imports + add new model classes
* Add new model classes
* Bugfix in TF T5 model
* Bugfix for TF T5 tests
* Bugfix in TF T5 model
* Fix TF T5 model tests
* Fix T5 tests + some renaming
* Fix inheritance issue in the AutoX tests
* Add tests for TF Flaubert and TF XLM Roberta
* Add tests for TF Flaubert and TF XLM Roberta
* Remove unused piece of code in the TF trainer
* bugfix and remove unused code
* Bugfix for TF 2.2
* Apply Style
* Divide TFSequenceClassificationAndMultipleChoiceLoss into their two respective name
* Apply style
* Mirror the PT Trainer in the TF one: fp16, optimizers and tb_writer as class parameter and better dataset handling
* Fix TF optimizations tests and apply style
* Remove useless parameter
* Bugfix and apply style
* Fix TF Trainer prediction
* Now the TF models return the loss such as their PyTorch couterparts
* Apply Style
* Ignore some tests output
* Take into account the SQuAD cls_index, p_mask and is_impossible parameters for the QuestionAnswering task models.
* Fix names for SQuAD data
* Apply Style
* Fix conflicts with 2.11 release
* Fix conflicts with 2.11
* Fix wrongname
* Add better documentation on the new create_optimizer function
* Fix isort
* logging_dir: use same default as PyTorch
Co-authored-by: Julien Chaumond <chaumond@gmail.com>
* Refactor tensor creation in tokenizers.
* Make sure to convert string to TensorType
* Refactor convert_to_tensors_
* Introduce numpy tensor creation
* Format
* Add unittest for TensorType creation from str
* sorting imports
* Added unittests for numpy tensor conversion.
* Do not use in-place version for squeeze as numpy doesn't provide such feature.
* Added extra parameter prepend_batch_axis: bool on prepare_for_model.
* Ensure test_np_encode_plus_sent_to_model is not executed if encoder/decoder model.
* style.
* numpy tests require_torch for now while flax not merged.
* Hopefully will make flake8 happy.
* One more time 🎶
* Kill model archive maps
* Fixup
* Also kill model_archive_map for MaskedBertPreTrainedModel
* Unhook config_archive_map
* Tokenizers: align with model id changes
* make style && make quality
* Fix CI
* pass on tokenizer to pipeline
* order input names when convert to onnx
* update style
* remove unused imports
* make ordered inputs list needs to be mutable
* add test custom bert model
* remove unused imports