* first commit
* bug fixes
* better examples
* undo padding
* remove wrong VOCAB_FILES_NAMES
* License
* make style
* make isort happy
* unit tests
* integration test
* make `black` happy by undoing `isort` changes!!
* lint
* no need for the padding value
* batch_size not bsz
* remove unused type casting
* seqlen not seq_len
* staticmethod
* `bert` selfattention instead of `n2`
* uint8 instead of bool + lints
* pad inputs_embeds using embeddings not a constant
* black
* unit test with padding
* fix unit tests
* remove redundant unit test
* upload model weights
* resolve todo
* simpler _mask_invalid_locations without lru_cache + backward compatible masked_fill_
* increase unittest coverage
* Distributed eval: SequentialDistributedSampler + gather all results
* For consistency only write to disk from world_master
Close https://github.com/huggingface/transformers/issues/4272
* Working distributed eval
* Hook into scripts
* Fix#3721 again
* TPU.mesh_reduce: stay in tensor space
Thanks @jysohn23
* Just a small comment
* whitespace
* torch.hub: pip install packaging
* Add test scenarii
* makes fetching last learning late in trainer backward compatible
* split comment to multiple lines
* fixes black styling issue
* uses version to create a more explicit logic
- add a citation.
- modify the table of the BLUE benchmark.
The table of the first version was not displayed correctly on https://huggingface.co/seiya/oubiobert-base-uncased.
Could you please confirm that this fix will allow you to display it correctly?
* Adding optimizations block from ONNXRuntime.
* Turn off external data format by default for PyTorch export.
* Correct the way use_external_format is passed through the cmdline args.
* Add index to be returned by NerPipeline to allow for the creation of
* Add entity groups
* Convert entity list to dict
* Add entity to entity_group_disagg atfter updating entity gorups
* Change 'group' parameter to 'grouped_entities'
* Add unit tests for grouped NER pipeline case
* Correct variable name typo for NER_FINETUNED_MODELS
* Sync grouped tests to recent test updates
* Added generic ONNX conversion script for PyTorch model.
* WIP initial TF support.
* TensorFlow/Keras ONNX export working.
* Print framework version info
* Add possibility to check the model is correctly loading on ONNX runtime.
* Remove quantization option.
* Specify ONNX opset version when exporting.
* Formatting.
* Remove unused imports.
* Make functions more generally reusable from other part of the code.
* isort happy.
* flake happy
* Export only feature-extraction for now
* Correctly check inputs order / filter before export.
* Removed task variable
* Fix invalid args call in load_graph_from_args.
* Fix invalid args call in convert.
* Fix invalid args call in infer_shapes.
* Raise exception and catch in caller function instead of exit.
* Add 04-onnx-export.ipynb notebook
* More WIP on the notebook
* Remove unused imports
* Simplify & remove unused constants.
* Export with constant_folding in PyTorch
* Let's try to put function args in the right order this time ...
* Disable external_data_format temporary
* ONNX notebook draft ready.
* Updated notebooks charts + wording
* Correct error while exporting last chart in notebook.
* Adressing @LysandreJik comment.
* Set ONNX opset to 11 as default value.
* Set opset param mandatory
* Added ONNX export unittests
* Quality.
* flake8 happy
* Add keras2onnx dependency on extras["tf"]
* Pin keras2onnx on github master to v1.6.5
* Second attempt.
* Third attempt.
* Use the right repo URL this time ...
* Do the same for onnxconverter-common
* Added keras2onnx and onnxconveter-common to 1.7.0 to supports TF2.2
* Correct commit hash.
* Addressing PR review: Optimization are enabled by default.
* Addressing PR review: small changes in the notebook
* setup.py comment about keras2onnx versioning.