[MBart] Add accelerate support for MBart (#22309)

add `accelerate` support for MBart
This commit is contained in:
Younes Belkada 2023-03-23 10:34:43 +01:00 committed by GitHub
parent 61f79b2986
commit ff20f9cf36
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -502,6 +502,7 @@ class MBartPreTrainedModel(PreTrainedModel):
config_class = MBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MBartDecoderLayer", "MBartAttention"]
def _init_weights(self, module):
std = self.config.init_std
@ -702,10 +703,10 @@ class MBartEncoder(MBartPreTrainedModel):
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -793,7 +794,7 @@ class MBartEncoder(MBartPreTrainedModel):
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
@ -876,10 +877,10 @@ class MBartDecoder(MBartPreTrainedModel):
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
@ -1038,7 +1039,7 @@ class MBartDecoder(MBartPreTrainedModel):
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)