Pipeline should be agnostic (#12656)

This commit is contained in:
Lysandre Debut 2021-07-12 17:42:59 +02:00 committed by GitHub
parent 9b3aab2cce
commit fd41e2daf4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -14,6 +14,7 @@
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.data.processors.squad import SquadExample
from transformers.pipelines import Pipeline, QuestionAnsweringArgumentHandler, pipeline
from transformers.testing_utils import slow
@ -57,7 +58,7 @@ class QAPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
task=self.pipeline_task,
model=model,
tokenizer=model,
framework="pt",
framework="pt" if is_torch_available() else "tf",
**self.pipeline_loading_kwargs,
)
for model in self.small_models
@ -65,6 +66,7 @@ class QAPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
return question_answering_pipelines
@slow
@unittest.skipIf(not is_torch_available() and not is_tf_available(), "Either torch or TF must be installed.")
def test_high_topk_small_context(self):
self.pipeline_running_kwargs.update({"topk": 20})
valid_inputs = [