mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
parent
12febc20db
commit
fd3eb3e3cd
@ -1463,10 +1463,10 @@ class GenerationTesterMixin:
|
|||||||
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
|
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
|
||||||
for model_class in self.all_generative_model_classes:
|
for model_class in self.all_generative_model_classes:
|
||||||
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
||||||
model = model_class(config).to(torch_device)
|
|
||||||
# We want to test only encoder-decoder models
|
# We want to test only encoder-decoder models
|
||||||
if not config.is_encoder_decoder:
|
if not config.is_encoder_decoder:
|
||||||
continue
|
continue
|
||||||
|
model = model_class(config).to(torch_device)
|
||||||
|
|
||||||
head_masking = {
|
head_masking = {
|
||||||
"head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
|
"head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
|
||||||
|
@ -20,8 +20,10 @@ import unittest
|
|||||||
from transformers import LlamaConfig, is_torch_available
|
from transformers import LlamaConfig, is_torch_available
|
||||||
from transformers.testing_utils import require_torch, torch_device
|
from transformers.testing_utils import require_torch, torch_device
|
||||||
|
|
||||||
|
from ...generation.test_utils import GenerationTesterMixin
|
||||||
from ...test_configuration_common import ConfigTester
|
from ...test_configuration_common import ConfigTester
|
||||||
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
||||||
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
||||||
|
|
||||||
|
|
||||||
if is_torch_available():
|
if is_torch_available():
|
||||||
@ -254,10 +256,21 @@ class LlamaModelTester:
|
|||||||
|
|
||||||
|
|
||||||
@require_torch
|
@require_torch
|
||||||
class LlamaModelTest(ModelTesterMixin, unittest.TestCase):
|
class LlamaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
||||||
all_model_classes = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
|
all_model_classes = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
|
||||||
all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
|
all_generative_model_classes = (LlamaForCausalLM,) if is_torch_available() else ()
|
||||||
|
pipeline_model_mapping = (
|
||||||
|
{
|
||||||
|
"feature-extraction": LlamaModel,
|
||||||
|
"text-classification": LlamaForSequenceClassification,
|
||||||
|
"text-generation": LlamaForCausalLM,
|
||||||
|
"zero-shot": LlamaForSequenceClassification,
|
||||||
|
}
|
||||||
|
if is_torch_available()
|
||||||
|
else {}
|
||||||
|
)
|
||||||
test_headmasking = False
|
test_headmasking = False
|
||||||
|
test_pruning = False
|
||||||
|
|
||||||
def setUp(self):
|
def setUp(self):
|
||||||
self.model_tester = LlamaModelTester(self)
|
self.model_tester = LlamaModelTester(self)
|
||||||
@ -316,22 +329,6 @@ class LlamaModelTest(ModelTesterMixin, unittest.TestCase):
|
|||||||
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
|
||||||
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
|
||||||
|
|
||||||
@unittest.skip("LLaMA does not support head pruning.")
|
|
||||||
def test_head_pruning(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@unittest.skip("LLaMA does not support head pruning.")
|
|
||||||
def test_head_pruning_integration(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@unittest.skip("LLaMA does not support head pruning.")
|
|
||||||
def test_head_pruning_save_load_from_config_init(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@unittest.skip("LLaMA does not support head pruning.")
|
|
||||||
def test_head_pruning_save_load_from_pretrained(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@unittest.skip("LLaMA buffers include complex numbers, which breaks this test")
|
@unittest.skip("LLaMA buffers include complex numbers, which breaks this test")
|
||||||
def test_save_load_fast_init_from_base(self):
|
def test_save_load_fast_init_from_base(self):
|
||||||
pass
|
pass
|
||||||
|
Loading…
Reference in New Issue
Block a user