mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-02 03:01:07 +06:00
Create README.md (#6602)
This commit is contained in:
parent
f5d69c75f7
commit
f9dadcd85b
101
model_cards/rohanrajpal/bert-base-en-hi-codemix-cased/README.md
Normal file
101
model_cards/rohanrajpal/bert-base-en-hi-codemix-cased/README.md
Normal file
@ -0,0 +1,101 @@
|
|||||||
|
---
|
||||||
|
language:
|
||||||
|
- hi
|
||||||
|
- en
|
||||||
|
tags:
|
||||||
|
- es
|
||||||
|
- en
|
||||||
|
- codemix
|
||||||
|
license: "apache-2.0"
|
||||||
|
datasets:
|
||||||
|
- SAIL 2017
|
||||||
|
metrics:
|
||||||
|
- fscore
|
||||||
|
- accuracy
|
||||||
|
- precision
|
||||||
|
- recall
|
||||||
|
---
|
||||||
|
|
||||||
|
# BERT codemixed base model for Hinglish (cased)
|
||||||
|
|
||||||
|
This model was built using [lingualytics](https://github.com/lingualytics/py-lingualytics), an open-source library that supports code-mixed analytics.
|
||||||
|
|
||||||
|
## Model description
|
||||||
|
|
||||||
|
Input for the model: Any codemixed Hinglish text
|
||||||
|
Output for the model: Sentiment. (0 - Negative, 1 - Neutral, 2 - Positive)
|
||||||
|
|
||||||
|
I took a bert-base-multilingual-cased model from Huggingface and finetuned it on [SAIL 2017](http://www.dasdipankar.com/SAILCodeMixed.html) dataset.
|
||||||
|
|
||||||
|
## Eval results
|
||||||
|
|
||||||
|
Performance of this model on the dataset
|
||||||
|
|
||||||
|
| metric | score |
|
||||||
|
|------------|----------|
|
||||||
|
| acc | 0.55873 |
|
||||||
|
| f1 | 0.558369 |
|
||||||
|
| acc_and_f1 | 0.558549 |
|
||||||
|
| precision | 0.558075 |
|
||||||
|
| recall | 0.55873 |
|
||||||
|
|
||||||
|
#### How to use
|
||||||
|
|
||||||
|
Here is how to use this model to get the features of a given text in *PyTorch*:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# You can include sample code which will be formatted
|
||||||
|
from transformers import BertTokenizer, BertModelForSequenceClassification
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
|
||||||
|
model = AutoModelForSequenceClassification.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
|
||||||
|
text = "Replace me by any text you'd like."
|
||||||
|
encoded_input = tokenizer(text, return_tensors='pt')
|
||||||
|
output = model(**encoded_input)
|
||||||
|
```
|
||||||
|
|
||||||
|
and in *TensorFlow*:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import BertTokenizer, TFBertModel
|
||||||
|
tokenizer = BertTokenizer.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
|
||||||
|
model = TFBertModel.from_pretrained('rohanrajpal/bert-base-en-es-codemix-cased')
|
||||||
|
text = "Replace me by any text you'd like."
|
||||||
|
encoded_input = tokenizer(text, return_tensors='tf')
|
||||||
|
output = model(encoded_input)
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Preprocessing
|
||||||
|
|
||||||
|
Followed standard preprocessing techniques:
|
||||||
|
- removed digits
|
||||||
|
- removed punctuation
|
||||||
|
- removed stopwords
|
||||||
|
- removed excess whitespace
|
||||||
|
Here's the snippet
|
||||||
|
|
||||||
|
```python
|
||||||
|
from pathlib import Path
|
||||||
|
import pandas as pd
|
||||||
|
from lingualytics.preprocessing import remove_lessthan, remove_punctuation, remove_stopwords
|
||||||
|
from lingualytics.stopwords import hi_stopwords,en_stopwords
|
||||||
|
from texthero.preprocessing import remove_digits, remove_whitespace
|
||||||
|
|
||||||
|
root = Path('<path-to-data>')
|
||||||
|
|
||||||
|
for file in 'test','train','validation':
|
||||||
|
tochange = root / f'{file}.txt'
|
||||||
|
df = pd.read_csv(tochange,header=None,sep='\t',names=['text','label'])
|
||||||
|
df['text'] = df['text'].pipe(remove_digits) \
|
||||||
|
.pipe(remove_punctuation) \
|
||||||
|
.pipe(remove_stopwords,stopwords=en_stopwords.union(hi_stopwords)) \
|
||||||
|
.pipe(remove_whitespace)
|
||||||
|
df.to_csv(tochange,index=None,header=None,sep='\t')
|
||||||
|
```
|
||||||
|
|
||||||
|
## Training data
|
||||||
|
|
||||||
|
The dataset and annotations are not good, but this is the best dataset I could find. I am working on procuring my own dataset and will try to come up with a better model!
|
||||||
|
|
||||||
|
## Training procedure
|
||||||
|
|
||||||
|
I trained on the dataset on the [bert-base-multilingual-cased model](https://huggingface.co/bert-base-multilingual-cased).
|
Loading…
Reference in New Issue
Block a user