Remove deprecated code (#37059)

* Remove deprecated code

* fix get_loading_attributes

* fix error

* skip test

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
This commit is contained in:
cyyever 2025-03-31 17:15:35 +08:00 committed by GitHub
parent d1efaf0318
commit f99c279d20
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 13 additions and 66 deletions

View File

@ -47,7 +47,7 @@ from transformers import (
Trainer,
TrainingArguments,
default_data_collator,
is_torch_tpu_available,
is_torch_xla_available,
set_seed,
)
from transformers.integrations import is_deepspeed_zero3_enabled
@ -525,7 +525,7 @@ def main():
if torch.cuda.is_availble():
pad_factor = 8
elif is_torch_tpu_available():
elif is_torch_xla_available(check_is_tpu=True):
pad_factor = 128
# Add the new tokens to the tokenizer
@ -795,9 +795,13 @@ def main():
processing_class=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
compute_metrics=compute_metrics
if training_args.do_eval and not is_torch_xla_available(check_is_tpu=True)
else None,
preprocess_logits_for_metrics=(
preprocess_logits_for_metrics if training_args.do_eval and not is_torch_tpu_available() else None
preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_xla_available(check_is_tpu=True)
else None
),
)

View File

@ -52,7 +52,7 @@ from transformers import (
SchedulerType,
default_data_collator,
get_scheduler,
is_torch_tpu_available,
is_torch_xla_available,
)
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.utils import check_min_version, send_example_telemetry
@ -492,7 +492,7 @@ def main():
if torch.cuda.is_availble():
pad_factor = 8
elif is_torch_tpu_available():
elif is_torch_xla_available(check_is_tpu=True):
pad_factor = 128
# Add the new tokens to the tokenizer

View File

@ -1037,7 +1037,6 @@ _import_structure = {
"is_torch_musa_available",
"is_torch_neuroncore_available",
"is_torch_npu_available",
"is_torch_tpu_available",
"is_torchvision_available",
"is_torch_xla_available",
"is_torch_xpu_available",
@ -6341,7 +6340,6 @@ if TYPE_CHECKING:
is_torch_musa_available,
is_torch_neuroncore_available,
is_torch_npu_available,
is_torch_tpu_available,
is_torch_xla_available,
is_torch_xpu_available,
is_torchvision_available,

View File

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from collections.abc import Collection, Iterable
from math import ceil
from typing import Optional, Union
@ -453,7 +452,6 @@ def center_crop(
size: tuple[int, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
return_numpy: Optional[bool] = None,
) -> np.ndarray:
"""
Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
@ -474,22 +472,11 @@ def center_crop(
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
If unset, will use the inferred format of the input image.
return_numpy (`bool`, *optional*):
Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
previous ImageFeatureExtractionMixin method.
- Unset: will return the same type as the input image.
- `True`: will return a numpy array.
- `False`: will return a `PIL.Image.Image` object.
Returns:
`np.ndarray`: The cropped image.
"""
requires_backends(center_crop, ["vision"])
if return_numpy is not None:
warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning)
return_numpy = True if return_numpy is None else return_numpy
if not isinstance(image, np.ndarray):
raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
@ -541,9 +528,6 @@ def center_crop(
new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST)
if not return_numpy:
new_image = to_pil_image(new_image)
return new_image

View File

@ -228,7 +228,6 @@ from .import_utils import (
is_torch_sdpa_available,
is_torch_tensorrt_fx_available,
is_torch_tf32_available,
is_torch_tpu_available,
is_torch_xla_available,
is_torch_xpu_available,
is_torchao_available,

View File

@ -675,31 +675,6 @@ def is_g2p_en_available():
return _g2p_en_available
@lru_cache()
def is_torch_tpu_available(check_device=True):
"Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
warnings.warn(
"`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
"Please use the `is_torch_xla_available` instead.",
FutureWarning,
)
if not _torch_available:
return False
if importlib.util.find_spec("torch_xla") is not None:
if check_device:
# We need to check if `xla_device` can be found, will raise a RuntimeError if not
try:
import torch_xla.core.xla_model as xm
_ = xm.xla_device()
return True
except RuntimeError:
return False
return True
return False
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
"""

View File

@ -682,7 +682,6 @@ class GPTQConfig(QuantizationConfigMixin):
self.use_exllama = use_exllama
self.max_input_length = max_input_length
self.exllama_config = exllama_config
self.disable_exllama = kwargs.pop("disable_exllama", None)
self.cache_block_outputs = cache_block_outputs
self.modules_in_block_to_quantize = modules_in_block_to_quantize
self.post_init()
@ -690,7 +689,6 @@ class GPTQConfig(QuantizationConfigMixin):
def get_loading_attributes(self):
attibutes_dict = copy.deepcopy(self.__dict__)
loading_attibutes = [
"disable_exllama",
"use_exllama",
"exllama_config",
"use_cuda_fp16",
@ -739,20 +737,9 @@ class GPTQConfig(QuantizationConfigMixin):
self.use_exllama = False
# auto-gptq specific kernel control logic
if self.disable_exllama is None and self.use_exllama is None:
if self.use_exllama is None:
# New default behaviour
self.use_exllama = True
elif self.disable_exllama is not None and self.use_exllama is None:
# Follow pattern of old config
logger.warning(
"Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`."
"The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file."
)
self.use_exllama = not self.disable_exllama
self.disable_exllama = None
elif self.disable_exllama is not None and self.use_exllama is not None:
# Only happens if user explicitly passes in both arguments
raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`")
if self.exllama_config is None:
self.exllama_config = {"version": ExllamaVersion.ONE}
@ -809,7 +796,7 @@ class GPTQConfig(QuantizationConfigMixin):
if "disable_exllama" in config_dict:
config_dict["use_exllama"] = not config_dict["disable_exllama"]
# switch to None to not trigger the warning
config_dict["disable_exllama"] = None
config_dict.pop("disable_exllama")
config = cls(**config_dict)
return config

View File

@ -592,7 +592,7 @@ class SeamlessM4Tv2ModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase)
# TODO: @ydshieh: refer to #34968
@unittest.skip(reason="Failing on multi-gpu runner")
def test_retain_grad_hidden_states_attentions(self):
pass
self.skipTest(reason="Failing on multi-gpu runner")
@require_torch