mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[s2s] wmt download script use less ram (#6405)
This commit is contained in:
parent
7c6a085ebf
commit
f6cb0f806e
@ -4,44 +4,48 @@ import fire
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def download_wmt_dataset(src_lang, tgt_lang, dataset="wmt19", save_dir=None) -> None:
|
||||
def download_wmt_dataset(src_lang="ro", tgt_lang="en", dataset="wmt16", save_dir=None) -> None:
|
||||
"""Download a dataset using the nlp package and save it to the format expected by finetune.py
|
||||
Format of save_dir: train.source, train.target, val.source, val.target, test.source, test.target.
|
||||
|
||||
Args:
|
||||
src_lang: <str> source language
|
||||
tgt_lang: <str> target language
|
||||
dataset: <str> like wmt19 (if you don't know, try wmt19).
|
||||
dataset: <str> wmt16, wmt17, etc. wmt16 is a good start as it's small. To get the full list run `import nlp; print([d.id for d in nlp.list_datasets() if "wmt" in d.id])`
|
||||
save_dir: <str>, where to save the datasets, defaults to f'{dataset}-{src_lang}-{tgt_lang}'
|
||||
|
||||
Usage:
|
||||
>>> download_wmt_dataset('en', 'ru', dataset='wmt19') # saves to wmt19_en_ru
|
||||
>>> download_wmt_dataset('ro', 'en', dataset='wmt16') # saves to wmt16-ro-en
|
||||
"""
|
||||
try:
|
||||
import nlp
|
||||
except (ModuleNotFoundError, ImportError):
|
||||
raise ImportError("run pip install nlp")
|
||||
pair = f"{src_lang}-{tgt_lang}"
|
||||
print(f"Converting {dataset}-{pair}")
|
||||
ds = nlp.load_dataset(dataset, pair)
|
||||
if save_dir is None:
|
||||
save_dir = f"{dataset}-{pair}"
|
||||
save_dir = Path(save_dir)
|
||||
save_dir.mkdir(exist_ok=True)
|
||||
|
||||
for split in tqdm(ds.keys()):
|
||||
tr_list = list(ds[split])
|
||||
data = [x["translation"] for x in tr_list]
|
||||
src, tgt = [], []
|
||||
for example in data:
|
||||
src.append(example[src_lang])
|
||||
tgt.append(example[tgt_lang])
|
||||
if split == "validation":
|
||||
split = "val" # to save to val.source, val.target like summary datasets
|
||||
src_path = save_dir.joinpath(f"{split}.source")
|
||||
src_path.open("w+").write("\n".join(src))
|
||||
tgt_path = save_dir.joinpath(f"{split}.target")
|
||||
tgt_path.open("w+").write("\n".join(tgt))
|
||||
print(f"saved dataset to {save_dir}")
|
||||
for split in ds.keys():
|
||||
print(f"Splitting {split} with {ds[split].num_rows} records")
|
||||
|
||||
# to save to val.source, val.target like summary datasets
|
||||
fn = "val" if split == "validation" else split
|
||||
src_path = save_dir.joinpath(f"{fn}.source")
|
||||
tgt_path = save_dir.joinpath(f"{fn}.target")
|
||||
src_fp = src_path.open("w+")
|
||||
tgt_fp = tgt_path.open("w+")
|
||||
|
||||
# reader is the bottleneck so writing one record at a time doesn't slow things down
|
||||
for x in tqdm(ds[split]):
|
||||
ex = x["translation"]
|
||||
src_fp.write(ex[src_lang] + "\n")
|
||||
tgt_fp.write(ex[tgt_lang] + "\n")
|
||||
|
||||
print(f"Saved {dataset} dataset to {save_dir}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user