mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 23:00:08 +06:00
run_squad --> run_squad_w_distillation
This commit is contained in:
parent
764a7923ec
commit
f5891c3821
585
examples/distillation/run_squad_w_distillation.py
Normal file
585
examples/distillation/run_squad_w_distillation.py
Normal file
@ -0,0 +1,585 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" This is the exact same script as `examples/run_squad.py` (as of 2019, October 4th) with an additional and optional step of distillation."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
||||
TensorDataset)
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
from transformers import (WEIGHTS_NAME, BertConfig,
|
||||
BertForQuestionAnswering, BertTokenizer,
|
||||
XLMConfig, XLMForQuestionAnswering,
|
||||
XLMTokenizer, XLNetConfig,
|
||||
XLNetForQuestionAnswering,
|
||||
XLNetTokenizer,
|
||||
DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
|
||||
|
||||
from transformers import AdamW, WarmupLinearSchedule
|
||||
|
||||
from ..utils_squad import (read_squad_examples, convert_examples_to_features,
|
||||
RawResult, write_predictions,
|
||||
RawResultExtended, write_predictions_extended)
|
||||
|
||||
# The follwing import is the official SQuAD evaluation script (2.0).
|
||||
# You can remove it from the dependencies if you are using this script outside of the library
|
||||
# We've added it here for automated tests (see examples/test_examples.py file)
|
||||
from ..utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
|
||||
for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
|
||||
|
||||
MODEL_CLASSES = {
|
||||
'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
|
||||
'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
|
||||
'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
|
||||
'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
|
||||
}
|
||||
|
||||
def set_seed(args):
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
if args.n_gpu > 0:
|
||||
torch.cuda.manual_seed_all(args.seed)
|
||||
|
||||
def to_list(tensor):
|
||||
return tensor.detach().cpu().tolist()
|
||||
|
||||
def train(args, train_dataset, model, tokenizer, teacher=None):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
|
||||
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
|
||||
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
|
||||
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
|
||||
|
||||
if args.max_steps > 0:
|
||||
t_total = args.max_steps
|
||||
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
|
||||
else:
|
||||
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
|
||||
|
||||
# Prepare optimizer and schedule (linear warmup and decay)
|
||||
no_decay = ['bias', 'LayerNorm.weight']
|
||||
optimizer_grouped_parameters = [
|
||||
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
|
||||
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
|
||||
]
|
||||
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
|
||||
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
|
||||
if args.fp16:
|
||||
try:
|
||||
from apex import amp
|
||||
except ImportError:
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# multi-gpu training (should be after apex fp16 initialization)
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
# Distributed training (should be after apex fp16 initialization)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
logger.info(" Num Epochs = %d", args.num_train_epochs)
|
||||
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
|
||||
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
|
||||
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
|
||||
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
|
||||
logger.info(" Total optimization steps = %d", t_total)
|
||||
|
||||
global_step = 0
|
||||
tr_loss, logging_loss = 0.0, 0.0
|
||||
model.zero_grad()
|
||||
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
|
||||
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
|
||||
for _ in train_iterator:
|
||||
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
||||
for step, batch in enumerate(epoch_iterator):
|
||||
model.train()
|
||||
if teacher is not None:
|
||||
teacher.eval()
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
'start_positions': batch[3],
|
||||
'end_positions': batch[4]}
|
||||
if args.model_type != 'distilbert':
|
||||
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
|
||||
if args.model_type in ['xlnet', 'xlm']:
|
||||
inputs.update({'cls_index': batch[5],
|
||||
'p_mask': batch[6]})
|
||||
outputs = model(**inputs)
|
||||
loss, start_logits_stu, end_logits_stu = outputs
|
||||
|
||||
# Distillation loss
|
||||
if teacher is not None:
|
||||
if 'token_type_ids' not in inputs:
|
||||
inputs['token_type_ids'] = None if args.teacher_type == 'xlm' else batch[2]
|
||||
with torch.no_grad():
|
||||
start_logits_tea, end_logits_tea = teacher(input_ids=inputs['input_ids'],
|
||||
token_type_ids=inputs['token_type_ids'],
|
||||
attention_mask=inputs['attention_mask'])
|
||||
assert start_logits_tea.size() == start_logits_stu.size()
|
||||
assert end_logits_tea.size() == end_logits_stu.size()
|
||||
|
||||
loss_fct = nn.KLDivLoss(reduction='batchmean')
|
||||
loss_start = loss_fct(F.log_softmax(start_logits_stu/args.temperature, dim=-1),
|
||||
F.softmax(start_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
|
||||
loss_end = loss_fct(F.log_softmax(end_logits_stu/args.temperature, dim=-1),
|
||||
F.softmax(end_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
|
||||
loss_ce = (loss_start + loss_end)/2.
|
||||
|
||||
loss = args.alpha_ce*loss_ce + args.alpha_squad*loss
|
||||
|
||||
if args.n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
loss = loss / args.gradient_accumulation_steps
|
||||
|
||||
if args.fp16:
|
||||
with amp.scale_loss(loss, optimizer) as scaled_loss:
|
||||
scaled_loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
|
||||
else:
|
||||
loss.backward()
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
|
||||
|
||||
tr_loss += loss.item()
|
||||
if (step + 1) % args.gradient_accumulation_steps == 0:
|
||||
optimizer.step()
|
||||
scheduler.step() # Update learning rate schedule
|
||||
model.zero_grad()
|
||||
global_step += 1
|
||||
|
||||
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
|
||||
# Log metrics
|
||||
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
|
||||
results = evaluate(args, model, tokenizer)
|
||||
for key, value in results.items():
|
||||
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
|
||||
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
|
||||
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
|
||||
logging_loss = tr_loss
|
||||
|
||||
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
|
||||
# Save model checkpoint
|
||||
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
||||
model_to_save.save_pretrained(output_dir)
|
||||
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
|
||||
logger.info("Saving model checkpoint to %s", output_dir)
|
||||
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
epoch_iterator.close()
|
||||
break
|
||||
if args.max_steps > 0 and global_step > args.max_steps:
|
||||
train_iterator.close()
|
||||
break
|
||||
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer.close()
|
||||
|
||||
return global_step, tr_loss / global_step
|
||||
|
||||
|
||||
def evaluate(args, model, tokenizer, prefix=""):
|
||||
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)
|
||||
|
||||
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
|
||||
# Note that DistributedSampler samples randomly
|
||||
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
|
||||
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
|
||||
|
||||
# Eval!
|
||||
logger.info("***** Running evaluation {} *****".format(prefix))
|
||||
logger.info(" Num examples = %d", len(dataset))
|
||||
logger.info(" Batch size = %d", args.eval_batch_size)
|
||||
all_results = []
|
||||
for batch in tqdm(eval_dataloader, desc="Evaluating"):
|
||||
model.eval()
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
with torch.no_grad():
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1]
|
||||
}
|
||||
if args.model_type != 'distilbert':
|
||||
inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids
|
||||
example_indices = batch[3]
|
||||
if args.model_type in ['xlnet', 'xlm']:
|
||||
inputs.update({'cls_index': batch[4],
|
||||
'p_mask': batch[5]})
|
||||
outputs = model(**inputs)
|
||||
|
||||
for i, example_index in enumerate(example_indices):
|
||||
eval_feature = features[example_index.item()]
|
||||
unique_id = int(eval_feature.unique_id)
|
||||
if args.model_type in ['xlnet', 'xlm']:
|
||||
# XLNet uses a more complex post-processing procedure
|
||||
result = RawResultExtended(unique_id = unique_id,
|
||||
start_top_log_probs = to_list(outputs[0][i]),
|
||||
start_top_index = to_list(outputs[1][i]),
|
||||
end_top_log_probs = to_list(outputs[2][i]),
|
||||
end_top_index = to_list(outputs[3][i]),
|
||||
cls_logits = to_list(outputs[4][i]))
|
||||
else:
|
||||
result = RawResult(unique_id = unique_id,
|
||||
start_logits = to_list(outputs[0][i]),
|
||||
end_logits = to_list(outputs[1][i]))
|
||||
all_results.append(result)
|
||||
|
||||
# Compute predictions
|
||||
output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
|
||||
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
|
||||
if args.version_2_with_negative:
|
||||
output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
|
||||
else:
|
||||
output_null_log_odds_file = None
|
||||
|
||||
if args.model_type in ['xlnet', 'xlm']:
|
||||
# XLNet uses a more complex post-processing procedure
|
||||
write_predictions_extended(examples, features, all_results, args.n_best_size,
|
||||
args.max_answer_length, output_prediction_file,
|
||||
output_nbest_file, output_null_log_odds_file, args.predict_file,
|
||||
model.config.start_n_top, model.config.end_n_top,
|
||||
args.version_2_with_negative, tokenizer, args.verbose_logging)
|
||||
else:
|
||||
write_predictions(examples, features, all_results, args.n_best_size,
|
||||
args.max_answer_length, args.do_lower_case, output_prediction_file,
|
||||
output_nbest_file, output_null_log_odds_file, args.verbose_logging,
|
||||
args.version_2_with_negative, args.null_score_diff_threshold)
|
||||
|
||||
# Evaluate with the official SQuAD script
|
||||
evaluate_options = EVAL_OPTS(data_file=args.predict_file,
|
||||
pred_file=output_prediction_file,
|
||||
na_prob_file=output_null_log_odds_file)
|
||||
results = evaluate_on_squad(evaluate_options)
|
||||
return results
|
||||
|
||||
|
||||
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
|
||||
if args.local_rank not in [-1, 0] and not evaluate:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
||||
|
||||
# Load data features from cache or dataset file
|
||||
input_file = args.predict_file if evaluate else args.train_file
|
||||
cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
|
||||
'dev' if evaluate else 'train',
|
||||
list(filter(None, args.model_name_or_path.split('/'))).pop(),
|
||||
str(args.max_seq_length)))
|
||||
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
|
||||
logger.info("Loading features from cached file %s", cached_features_file)
|
||||
features = torch.load(cached_features_file)
|
||||
else:
|
||||
logger.info("Creating features from dataset file at %s", input_file)
|
||||
examples = read_squad_examples(input_file=input_file,
|
||||
is_training=not evaluate,
|
||||
version_2_with_negative=args.version_2_with_negative)
|
||||
features = convert_examples_to_features(examples=examples,
|
||||
tokenizer=tokenizer,
|
||||
max_seq_length=args.max_seq_length,
|
||||
doc_stride=args.doc_stride,
|
||||
max_query_length=args.max_query_length,
|
||||
is_training=not evaluate)
|
||||
if args.local_rank in [-1, 0]:
|
||||
logger.info("Saving features into cached file %s", cached_features_file)
|
||||
torch.save(features, cached_features_file)
|
||||
|
||||
if args.local_rank == 0 and not evaluate:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
|
||||
|
||||
# Convert to Tensors and build dataset
|
||||
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
||||
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
|
||||
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
|
||||
all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
|
||||
all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
|
||||
if evaluate:
|
||||
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_example_index, all_cls_index, all_p_mask)
|
||||
else:
|
||||
all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
|
||||
all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
|
||||
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
|
||||
all_start_positions, all_end_positions,
|
||||
all_cls_index, all_p_mask)
|
||||
|
||||
if output_examples:
|
||||
return dataset, examples, features
|
||||
return dataset
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
## Required parameters
|
||||
parser.add_argument("--train_file", default=None, type=str, required=True,
|
||||
help="SQuAD json for training. E.g., train-v1.1.json")
|
||||
parser.add_argument("--predict_file", default=None, type=str, required=True,
|
||||
help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
|
||||
parser.add_argument("--model_type", default=None, type=str, required=True,
|
||||
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
|
||||
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
|
||||
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
|
||||
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
||||
help="The output directory where the model checkpoints and predictions will be written.")
|
||||
|
||||
# Distillation parameters (optional)
|
||||
parser.add_argument('--teacher_type', default=None, type=str,
|
||||
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.")
|
||||
parser.add_argument('--teacher_name_or_path', default=None, type=str,
|
||||
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.")
|
||||
parser.add_argument('--alpha_ce', default=0.5, type=float,
|
||||
help="Distillation loss linear weight. Only for distillation.")
|
||||
parser.add_argument('--alpha_squad', default=0.5, type=float,
|
||||
help="True SQuAD loss linear weight. Only for distillation.")
|
||||
parser.add_argument('--temperature', default=2.0, type=float,
|
||||
help="Distillation temperature. Only for distillation.")
|
||||
|
||||
## Other parameters
|
||||
parser.add_argument("--config_name", default="", type=str,
|
||||
help="Pretrained config name or path if not the same as model_name")
|
||||
parser.add_argument("--tokenizer_name", default="", type=str,
|
||||
help="Pretrained tokenizer name or path if not the same as model_name")
|
||||
parser.add_argument("--cache_dir", default="", type=str,
|
||||
help="Where do you want to store the pre-trained models downloaded from s3")
|
||||
|
||||
parser.add_argument('--version_2_with_negative', action='store_true',
|
||||
help='If true, the SQuAD examples contain some that do not have an answer.')
|
||||
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
|
||||
help="If null_score - best_non_null is greater than the threshold predict null.")
|
||||
|
||||
parser.add_argument("--max_seq_length", default=384, type=int,
|
||||
help="The maximum total input sequence length after WordPiece tokenization. Sequences "
|
||||
"longer than this will be truncated, and sequences shorter than this will be padded.")
|
||||
parser.add_argument("--doc_stride", default=128, type=int,
|
||||
help="When splitting up a long document into chunks, how much stride to take between chunks.")
|
||||
parser.add_argument("--max_query_length", default=64, type=int,
|
||||
help="The maximum number of tokens for the question. Questions longer than this will "
|
||||
"be truncated to this length.")
|
||||
parser.add_argument("--do_train", action='store_true',
|
||||
help="Whether to run training.")
|
||||
parser.add_argument("--do_eval", action='store_true',
|
||||
help="Whether to run eval on the dev set.")
|
||||
parser.add_argument("--evaluate_during_training", action='store_true',
|
||||
help="Rul evaluation during training at each logging step.")
|
||||
parser.add_argument("--do_lower_case", action='store_true',
|
||||
help="Set this flag if you are using an uncased model.")
|
||||
|
||||
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
|
||||
help="Batch size per GPU/CPU for training.")
|
||||
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
|
||||
help="Batch size per GPU/CPU for evaluation.")
|
||||
parser.add_argument("--learning_rate", default=5e-5, type=float,
|
||||
help="The initial learning rate for Adam.")
|
||||
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
||||
parser.add_argument("--weight_decay", default=0.0, type=float,
|
||||
help="Weight deay if we apply some.")
|
||||
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
|
||||
help="Epsilon for Adam optimizer.")
|
||||
parser.add_argument("--max_grad_norm", default=1.0, type=float,
|
||||
help="Max gradient norm.")
|
||||
parser.add_argument("--num_train_epochs", default=3.0, type=float,
|
||||
help="Total number of training epochs to perform.")
|
||||
parser.add_argument("--max_steps", default=-1, type=int,
|
||||
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
|
||||
parser.add_argument("--warmup_steps", default=0, type=int,
|
||||
help="Linear warmup over warmup_steps.")
|
||||
parser.add_argument("--n_best_size", default=20, type=int,
|
||||
help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
|
||||
parser.add_argument("--max_answer_length", default=30, type=int,
|
||||
help="The maximum length of an answer that can be generated. This is needed because the start "
|
||||
"and end predictions are not conditioned on one another.")
|
||||
parser.add_argument("--verbose_logging", action='store_true',
|
||||
help="If true, all of the warnings related to data processing will be printed. "
|
||||
"A number of warnings are expected for a normal SQuAD evaluation.")
|
||||
|
||||
parser.add_argument('--logging_steps', type=int, default=50,
|
||||
help="Log every X updates steps.")
|
||||
parser.add_argument('--save_steps', type=int, default=50,
|
||||
help="Save checkpoint every X updates steps.")
|
||||
parser.add_argument("--eval_all_checkpoints", action='store_true',
|
||||
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
|
||||
parser.add_argument("--no_cuda", action='store_true',
|
||||
help="Whether not to use CUDA when available")
|
||||
parser.add_argument('--overwrite_output_dir', action='store_true',
|
||||
help="Overwrite the content of the output directory")
|
||||
parser.add_argument('--overwrite_cache', action='store_true',
|
||||
help="Overwrite the cached training and evaluation sets")
|
||||
parser.add_argument('--seed', type=int, default=42,
|
||||
help="random seed for initialization")
|
||||
|
||||
parser.add_argument("--local_rank", type=int, default=-1,
|
||||
help="local_rank for distributed training on gpus")
|
||||
parser.add_argument('--fp16', action='store_true',
|
||||
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
|
||||
parser.add_argument('--fp16_opt_level', type=str, default='O1',
|
||||
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
|
||||
"See details at https://nvidia.github.io/apex/amp.html")
|
||||
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
||||
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
|
||||
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
|
||||
|
||||
# Setup distant debugging if needed
|
||||
if args.server_ip and args.server_port:
|
||||
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
|
||||
import ptvsd
|
||||
print("Waiting for debugger attach")
|
||||
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
|
||||
ptvsd.wait_for_attach()
|
||||
|
||||
# Setup CUDA, GPU & distributed training
|
||||
if args.local_rank == -1 or args.no_cuda:
|
||||
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
|
||||
args.n_gpu = torch.cuda.device_count()
|
||||
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
|
||||
torch.cuda.set_device(args.local_rank)
|
||||
device = torch.device("cuda", args.local_rank)
|
||||
torch.distributed.init_process_group(backend='nccl')
|
||||
args.n_gpu = 1
|
||||
args.device = device
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
||||
datefmt = '%m/%d/%Y %H:%M:%S',
|
||||
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
|
||||
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
|
||||
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
|
||||
|
||||
# Set seed
|
||||
set_seed(args)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
if args.local_rank not in [-1, 0]:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
args.model_type = args.model_type.lower()
|
||||
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
|
||||
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
|
||||
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
|
||||
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
|
||||
|
||||
if args.teacher_type is not None:
|
||||
assert args.teacher_name_or_path is not None
|
||||
assert args.alpha_ce > 0.
|
||||
assert args.alpha_ce + args.alpha_squad > 0.
|
||||
assert args.teacher_type != 'distilbert', "We constraint teachers not to be of type DistilBERT."
|
||||
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
|
||||
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
|
||||
teacher = teacher_model_class.from_pretrained(args.teacher_name_or_path, config=teacher_config)
|
||||
teacher.to(args.device)
|
||||
else:
|
||||
teacher = None
|
||||
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
model.to(args.device)
|
||||
|
||||
logger.info("Training/evaluation parameters %s", args)
|
||||
|
||||
# Training
|
||||
if args.do_train:
|
||||
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
|
||||
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
|
||||
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
||||
|
||||
|
||||
# Save the trained model and the tokenizer
|
||||
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
|
||||
# Create output directory if needed
|
||||
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
|
||||
os.makedirs(args.output_dir)
|
||||
|
||||
logger.info("Saving model checkpoint to %s", args.output_dir)
|
||||
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
|
||||
# They can then be reloaded using `from_pretrained()`
|
||||
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
|
||||
model_to_save.save_pretrained(args.output_dir)
|
||||
tokenizer.save_pretrained(args.output_dir)
|
||||
|
||||
# Good practice: save your training arguments together with the trained model
|
||||
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
|
||||
|
||||
# Load a trained model and vocabulary that you have fine-tuned
|
||||
model = model_class.from_pretrained(args.output_dir)
|
||||
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
|
||||
model.to(args.device)
|
||||
|
||||
|
||||
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
|
||||
results = {}
|
||||
if args.do_eval and args.local_rank in [-1, 0]:
|
||||
checkpoints = [args.output_dir]
|
||||
if args.eval_all_checkpoints:
|
||||
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
|
||||
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce model loading logs
|
||||
|
||||
logger.info("Evaluate the following checkpoints: %s", checkpoints)
|
||||
|
||||
for checkpoint in checkpoints:
|
||||
# Reload the model
|
||||
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
|
||||
model = model_class.from_pretrained(checkpoint)
|
||||
model.to(args.device)
|
||||
|
||||
# Evaluate
|
||||
result = evaluate(args, model, tokenizer, prefix=global_step)
|
||||
|
||||
result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
|
||||
results.update(result)
|
||||
|
||||
logger.info("Results: {}".format(results))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -13,7 +13,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet) with an optional step of distillation."""
|
||||
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
|
||||
@ -28,8 +28,6 @@ import torch
|
||||
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
||||
TensorDataset)
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
from tensorboardX import SummaryWriter
|
||||
@ -75,7 +73,7 @@ def set_seed(args):
|
||||
def to_list(tensor):
|
||||
return tensor.detach().cpu().tolist()
|
||||
|
||||
def train(args, train_dataset, model, tokenizer, teacher=None):
|
||||
def train(args, train_dataset, model, tokenizer):
|
||||
""" Train the model """
|
||||
if args.local_rank in [-1, 0]:
|
||||
tb_writer = SummaryWriter()
|
||||
@ -134,8 +132,6 @@ def train(args, train_dataset, model, tokenizer, teacher=None):
|
||||
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
|
||||
for step, batch in enumerate(epoch_iterator):
|
||||
model.train()
|
||||
if teacher is not None:
|
||||
teacher.eval()
|
||||
batch = tuple(t.to(args.device) for t in batch)
|
||||
inputs = {'input_ids': batch[0],
|
||||
'attention_mask': batch[1],
|
||||
@ -147,27 +143,7 @@ def train(args, train_dataset, model, tokenizer, teacher=None):
|
||||
inputs.update({'cls_index': batch[5],
|
||||
'p_mask': batch[6]})
|
||||
outputs = model(**inputs)
|
||||
loss, start_logits_stu, end_logits_stu = outputs
|
||||
|
||||
# Distillation loss
|
||||
if teacher is not None:
|
||||
if 'token_type_ids' not in inputs:
|
||||
inputs['token_type_ids'] = None if args.teacher_type == 'xlm' else batch[2]
|
||||
with torch.no_grad():
|
||||
start_logits_tea, end_logits_tea = teacher(input_ids=inputs['input_ids'],
|
||||
token_type_ids=inputs['token_type_ids'],
|
||||
attention_mask=inputs['attention_mask'])
|
||||
assert start_logits_tea.size() == start_logits_stu.size()
|
||||
assert end_logits_tea.size() == end_logits_stu.size()
|
||||
|
||||
loss_fct = nn.KLDivLoss(reduction='batchmean')
|
||||
loss_start = loss_fct(F.log_softmax(start_logits_stu/args.temperature, dim=-1),
|
||||
F.softmax(start_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
|
||||
loss_end = loss_fct(F.log_softmax(end_logits_stu/args.temperature, dim=-1),
|
||||
F.softmax(end_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
|
||||
loss_ce = (loss_start + loss_end)/2.
|
||||
|
||||
loss = args.alpha_ce*loss_ce + args.alpha_squad*loss
|
||||
loss = outputs[0] # model outputs are always tuple in transformers (see doc)
|
||||
|
||||
if args.n_gpu > 1:
|
||||
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
|
||||
@ -367,18 +343,6 @@ def main():
|
||||
parser.add_argument("--output_dir", default=None, type=str, required=True,
|
||||
help="The output directory where the model checkpoints and predictions will be written.")
|
||||
|
||||
# Distillation parameters (optional)
|
||||
parser.add_argument('--teacher_type', default=None, type=str,
|
||||
help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.")
|
||||
parser.add_argument('--teacher_name_or_path', default=None, type=str,
|
||||
help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.")
|
||||
parser.add_argument('--alpha_ce', default=0.5, type=float,
|
||||
help="Distillation loss linear weight. Only for distillation.")
|
||||
parser.add_argument('--alpha_squad', default=0.5, type=float,
|
||||
help="True SQuAD loss linear weight. Only for distillation.")
|
||||
parser.add_argument('--temperature', default=2.0, type=float,
|
||||
help="Distillation temperature. Only for distillation.")
|
||||
|
||||
## Other parameters
|
||||
parser.add_argument("--config_name", default="", type=str,
|
||||
help="Pretrained config name or path if not the same as model_name")
|
||||
@ -506,17 +470,6 @@ def main():
|
||||
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
|
||||
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
|
||||
|
||||
if args.teacher_type is not None:
|
||||
assert args.teacher_name_or_path is not None
|
||||
assert args.alpha_ce > 0.
|
||||
assert args.alpha_ce + args.alpha_squad > 0.
|
||||
assert args.teacher_type != 'distilbert', "We constraint teachers not to be of type DistilBERT."
|
||||
teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
|
||||
teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
|
||||
teacher = teacher_model_class.from_pretrained(args.teacher_name_or_path, config=teacher_config)
|
||||
teacher.to(args.device)
|
||||
else:
|
||||
teacher = None
|
||||
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
@ -528,7 +481,7 @@ def main():
|
||||
# Training
|
||||
if args.do_train:
|
||||
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
|
||||
global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
|
||||
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
|
||||
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user