mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel (#15298)
* Fix the inconsistency of loss calculation between PT/TF XLNetLMHeadModel * overwrite test_loss_computation Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
e09473a817
commit
f380bf2b61
@ -1390,10 +1390,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
|
||||
|
||||
loss = None
|
||||
if inputs["labels"] is not None:
|
||||
# shift labels to the left and cut last logit token
|
||||
logits = logits[:, :-1]
|
||||
labels = inputs["labels"][:, 1:]
|
||||
loss = self.hf_compute_loss(labels, logits)
|
||||
loss = self.hf_compute_loss(inputs["labels"], logits)
|
||||
|
||||
if not inputs["return_dict"]:
|
||||
output = (logits,) + transformer_outputs[1:]
|
||||
|
@ -14,6 +14,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import inspect
|
||||
import random
|
||||
import unittest
|
||||
|
||||
@ -391,6 +392,69 @@ class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
|
||||
model = TFXLNetModel.from_pretrained(model_name)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
# overwrite since `TFXLNetLMHeadModel` doesn't cut logits/labels
|
||||
def test_loss_computation(self):
|
||||
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
||||
for model_class in self.all_model_classes:
|
||||
model = model_class(config)
|
||||
if getattr(model, "hf_compute_loss", None):
|
||||
# The number of elements in the loss should be the same as the number of elements in the label
|
||||
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
||||
added_label = prepared_for_class[
|
||||
sorted(list(prepared_for_class.keys() - inputs_dict.keys()), reverse=True)[0]
|
||||
]
|
||||
loss_size = tf.size(added_label)
|
||||
|
||||
# `TFXLNetLMHeadModel` doesn't cut logits/labels
|
||||
# if model.__class__ in get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING):
|
||||
# # if loss is causal lm loss, labels are shift, so that one label per batch
|
||||
# # is cut
|
||||
# loss_size = loss_size - self.model_tester.batch_size
|
||||
|
||||
# Test that model correctly compute the loss with kwargs
|
||||
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
||||
input_name = "input_ids" if "input_ids" in prepared_for_class else "pixel_values"
|
||||
input_ids = prepared_for_class.pop(input_name)
|
||||
|
||||
loss = model(input_ids, **prepared_for_class)[0]
|
||||
self.assertEqual(loss.shape, [loss_size])
|
||||
|
||||
# Test that model correctly compute the loss with a dict
|
||||
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
||||
loss = model(prepared_for_class)[0]
|
||||
self.assertEqual(loss.shape, [loss_size])
|
||||
|
||||
# Test that model correctly compute the loss with a tuple
|
||||
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
|
||||
|
||||
# Get keys that were added with the _prepare_for_class function
|
||||
label_keys = prepared_for_class.keys() - inputs_dict.keys()
|
||||
signature = inspect.signature(model.call).parameters
|
||||
signature_names = list(signature.keys())
|
||||
|
||||
# Create a dictionary holding the location of the tensors in the tuple
|
||||
tuple_index_mapping = {0: input_name}
|
||||
for label_key in label_keys:
|
||||
label_key_index = signature_names.index(label_key)
|
||||
tuple_index_mapping[label_key_index] = label_key
|
||||
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
|
||||
# Initialize a list with their default values, update the values and convert to a tuple
|
||||
list_input = []
|
||||
|
||||
for name in signature_names:
|
||||
if name != "kwargs":
|
||||
list_input.append(signature[name].default)
|
||||
|
||||
for index, value in sorted_tuple_index_mapping:
|
||||
list_input[index] = prepared_for_class[value]
|
||||
|
||||
tuple_input = tuple(list_input)
|
||||
|
||||
# Send to model
|
||||
loss = model(tuple_input[:-1])[0]
|
||||
|
||||
self.assertEqual(loss.shape, [loss_size])
|
||||
|
||||
|
||||
@require_tf
|
||||
class TFXLNetModelLanguageGenerationTest(unittest.TestCase):
|
||||
|
Loading…
Reference in New Issue
Block a user