mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Albert is ExecuTorch compatible (#34476)
Co-authored-by: Guang Yang <guangyang@fb.com>
This commit is contained in:
parent
34620e8f0a
commit
f339042b0b
@ -16,7 +16,9 @@
|
||||
|
||||
import unittest
|
||||
|
||||
from transformers import AlbertConfig, is_torch_available
|
||||
from packaging import version
|
||||
|
||||
from transformers import AlbertConfig, AutoTokenizer, is_torch_available
|
||||
from transformers.models.auto import get_values
|
||||
from transformers.testing_utils import require_torch, slow, torch_device
|
||||
|
||||
@ -342,3 +344,45 @@ class AlbertModelIntegrationTest(unittest.TestCase):
|
||||
)
|
||||
|
||||
self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
|
||||
|
||||
@slow
|
||||
def test_export(self):
|
||||
if version.parse(torch.__version__) < version.parse("2.4.0"):
|
||||
self.skipTest(reason="This test requires torch >= 2.4 to run.")
|
||||
|
||||
distilbert_model = "albert/albert-base-v2"
|
||||
device = "cpu"
|
||||
attn_implementation = "sdpa"
|
||||
max_length = 64
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(distilbert_model)
|
||||
inputs = tokenizer(
|
||||
f"Paris is the {tokenizer.mask_token} of France.",
|
||||
return_tensors="pt",
|
||||
padding="max_length",
|
||||
max_length=max_length,
|
||||
)
|
||||
|
||||
model = AlbertForMaskedLM.from_pretrained(
|
||||
distilbert_model,
|
||||
device_map=device,
|
||||
attn_implementation=attn_implementation,
|
||||
)
|
||||
|
||||
logits = model(**inputs).logits
|
||||
eg_predicted_mask = tokenizer.decode(logits[0, 4].topk(5).indices)
|
||||
self.assertEqual(
|
||||
eg_predicted_mask.split(),
|
||||
["capital", "capitol", "comune", "arrondissement", "bastille"],
|
||||
)
|
||||
|
||||
exported_program = torch.export.export(
|
||||
model,
|
||||
args=(inputs["input_ids"],),
|
||||
kwargs={"attention_mask": inputs["attention_mask"]},
|
||||
strict=True,
|
||||
)
|
||||
|
||||
result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"])
|
||||
ep_predicted_mask = tokenizer.decode(result.logits[0, 4].topk(5).indices)
|
||||
self.assertEqual(eg_predicted_mask, ep_predicted_mask)
|
||||
|
Loading…
Reference in New Issue
Block a user