mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
This reverts commit 35bd089a24
.
This commit is contained in:
parent
bf0addc56e
commit
f2ecb9eec4
@ -31,8 +31,6 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
If no framework is specified, will default to the one currently installed. If no framework is specified and
|
||||
both frameworks are installed, will default to the framework of the `model`, or to PyTorch if no model is
|
||||
provided.
|
||||
return_tensor (`bool`, *optional*):
|
||||
If `True`, returns a tensor according to the specified framework, otherwise returns a list.
|
||||
task (`str`, defaults to `""`):
|
||||
A task-identifier for the pipeline.
|
||||
args_parser ([`~pipelines.ArgumentHandler`], *optional*):
|
||||
@ -42,7 +40,7 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
the associated CUDA device id.
|
||||
"""
|
||||
|
||||
def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs):
|
||||
def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, **kwargs):
|
||||
if tokenize_kwargs is None:
|
||||
tokenize_kwargs = {}
|
||||
|
||||
@ -55,11 +53,7 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
|
||||
preprocess_params = tokenize_kwargs
|
||||
|
||||
postprocess_params = {}
|
||||
if return_tensors is not None:
|
||||
postprocess_params["return_tensors"] = return_tensors
|
||||
|
||||
return preprocess_params, {}, postprocess_params
|
||||
return preprocess_params, {}, {}
|
||||
|
||||
def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]:
|
||||
return_tensors = self.framework
|
||||
@ -70,10 +64,8 @@ class FeatureExtractionPipeline(Pipeline):
|
||||
model_outputs = self.model(**model_inputs)
|
||||
return model_outputs
|
||||
|
||||
def postprocess(self, model_outputs, return_tensors=False):
|
||||
def postprocess(self, model_outputs):
|
||||
# [0] is the first available tensor, logits or last_hidden_state.
|
||||
if return_tensors:
|
||||
return model_outputs[0]
|
||||
if self.framework == "pt":
|
||||
return model_outputs[0].tolist()
|
||||
elif self.framework == "tf":
|
||||
|
@ -15,8 +15,6 @@
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import torch
|
||||
|
||||
from transformers import (
|
||||
FEATURE_EXTRACTOR_MAPPING,
|
||||
@ -135,22 +133,6 @@ class FeatureExtractionPipelineTests(unittest.TestCase, metaclass=PipelineTestCa
|
||||
tokenize_kwargs=tokenize_kwargs,
|
||||
)
|
||||
|
||||
@require_torch
|
||||
def test_return_tensors_pt(self):
|
||||
feature_extractor = pipeline(
|
||||
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
|
||||
)
|
||||
outputs = feature_extractor("This is a test" * 100, return_tensors=True)
|
||||
self.assertTrue(torch.is_tensor(outputs))
|
||||
|
||||
@require_tf
|
||||
def test_return_tensors_tf(self):
|
||||
feature_extractor = pipeline(
|
||||
task="feature-extraction", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
|
||||
)
|
||||
outputs = feature_extractor("This is a test" * 100, return_tensors=True)
|
||||
self.assertTrue(tf.is_tensor(outputs))
|
||||
|
||||
def get_shape(self, input_, shape=None):
|
||||
if shape is None:
|
||||
shape = []
|
||||
|
Loading…
Reference in New Issue
Block a user