Fix a bunch of slow tests (#8634)

* CI should install `sentencepiece`

* Requiring TF

* Fixing some TFDPR bugs

* remove return_dict=False/True hack

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
This commit is contained in:
Lysandre Debut 2020-11-19 10:41:41 -05:00 committed by GitHub
parent 5362bb8a6b
commit f2e07e7272
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 94 additions and 48 deletions

View File

@ -48,7 +48,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[torch,sklearn,testing,onnxruntime]
pip install .[torch,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
- name: Are GPUs recognized by our DL frameworks
@ -117,7 +117,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[tf,sklearn,testing,onnxruntime]
pip install .[tf,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
- name: Are GPUs recognized by our DL frameworks
@ -185,7 +185,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[torch,sklearn,testing,onnxruntime]
pip install .[torch,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
- name: Are GPUs recognized by our DL frameworks
@ -244,7 +244,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[tf,sklearn,testing,onnxruntime]
pip install .[tf,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
- name: Are GPUs recognized by our DL frameworks

View File

@ -50,7 +50,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[torch,sklearn,testing,onnxruntime]
pip install .[torch,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
pip list
@ -144,7 +144,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[tf,sklearn,testing,onnxruntime]
pip install .[tf,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
pip list
@ -223,7 +223,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[torch,sklearn,testing,onnxruntime]
pip install .[torch,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
pip list
@ -251,11 +251,11 @@ jobs:
RUN_SLOW: yes
run: |
source .env/bin/activate
python -m pytest -n 1 --dist=loadfile -s --make-reports=examples_torch_multi_gpu examples
python -m pytest -n 1 --dist=loadfile -s --make-reports=tests_torch_examples_multi_gpu examples
- name: Failure short reports
if: ${{ always() }}
run: cat reports/examples_torch_multi_gpu_failures_short.txt
run: cat reports/tests_torch_examples_multi_gpu_failures_short.txt
- name: Run all pipeline tests on multi-GPU
if: ${{ always() }}
@ -314,7 +314,7 @@ jobs:
run: |
source .env/bin/activate
pip install --upgrade pip
pip install .[tf,sklearn,testing,onnxruntime]
pip install .[tf,sklearn,testing,onnxruntime,sentencepiece]
pip install git+https://github.com/huggingface/datasets
pip list
@ -345,11 +345,11 @@ jobs:
RUN_PIPELINE_TESTS: yes
run: |
source .env/bin/activate
python -m pytest -n 1 --dist=loadfile -s -m is_pipeline_test --make-reports=tests_tf_pipelines_multi_gpu tests
python -m pytest -n 1 --dist=loadfile -s -m is_pipeline_test --make-reports=tests_tf_pipeline_multi_gpu tests
- name: Failure short reports
if: ${{ always() }}
run: cat reports/tests_tf_multi_gpu_pipelines_failures_short.txt
run: cat reports/tests_tf_pipeline_multi_gpu_failures_short.txt
- name: Test suite reports artifacts
if: ${{ always() }}

View File

@ -82,7 +82,7 @@ class TFDPRContextEncoderOutput(ModelOutput):
heads.
"""
pooler_output: tf.Tensor
pooler_output: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
@ -110,7 +110,7 @@ class TFDPRQuestionEncoderOutput(ModelOutput):
heads.
"""
pooler_output: tf.Tensor
pooler_output: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
attentions: Optional[Tuple[tf.Tensor]] = None
@ -141,7 +141,7 @@ class TFDPRReaderOutput(ModelOutput):
heads.
"""
start_logits: tf.Tensor
start_logits: tf.Tensor = None
end_logits: tf.Tensor = None
relevance_logits: tf.Tensor = None
hidden_states: Optional[Tuple[tf.Tensor]] = None
@ -181,7 +181,7 @@ class TFDPREncoder(TFPreTrainedModel):
return_dict = return_dict if return_dict is not None else self.bert_model.return_dict
outputs = self.bert_model(
inputs=input_ids,
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
@ -228,7 +228,8 @@ class TFDPRSpanPredictor(TFPreTrainedModel):
def call(
self,
input_ids: Tensor,
attention_mask: Tensor,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
@ -242,6 +243,7 @@ class TFDPRSpanPredictor(TFPreTrainedModel):
outputs = self.encoder(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
@ -474,19 +476,21 @@ class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
inputs_embeds = inputs[2] if len(inputs) > 2 else inputs_embeds
output_attentions = inputs[3] if len(inputs) > 3 else output_attentions
output_hidden_states = inputs[4] if len(inputs) > 4 else output_hidden_states
return_dict = inputs[5] if len(inputs) > 5 else return_dict
assert len(inputs) <= 6, "Too many inputs."
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
output_attentions = inputs[4] if len(inputs) > 4 else output_attentions
output_hidden_states = inputs[5] if len(inputs) > 5 else output_hidden_states
return_dict = inputs[6] if len(inputs) > 6 else return_dict
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
return_dict = inputs.get("return_dict", return_dict)
assert len(inputs) <= 6, "Too many inputs."
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
@ -573,19 +577,21 @@ class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
inputs_embeds = inputs[2] if len(inputs) > 2 else inputs_embeds
output_attentions = inputs[3] if len(inputs) > 3 else output_attentions
output_hidden_states = inputs[4] if len(inputs) > 4 else output_hidden_states
return_dict = inputs[5] if len(inputs) > 5 else return_dict
assert len(inputs) <= 6, "Too many inputs."
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
output_attentions = inputs[4] if len(inputs) > 4 else output_attentions
output_hidden_states = inputs[5] if len(inputs) > 5 else output_hidden_states
return_dict = inputs[6] if len(inputs) > 6 else return_dict
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
return_dict = inputs.get("return_dict", return_dict)
assert len(inputs) <= 6, "Too many inputs."
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
@ -650,6 +656,7 @@ class TFDPRReader(TFDPRPretrainedReader):
self,
inputs,
attention_mask: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
inputs_embeds: Optional[Tensor] = None,
output_attentions: bool = None,
output_hidden_states: bool = None,
@ -679,19 +686,21 @@ class TFDPRReader(TFDPRPretrainedReader):
if isinstance(inputs, (tuple, list)):
input_ids = inputs[0]
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
inputs_embeds = inputs[2] if len(inputs) > 2 else inputs_embeds
output_attentions = inputs[3] if len(inputs) > 3 else output_attentions
output_hidden_states = inputs[4] if len(inputs) > 4 else output_hidden_states
return_dict = inputs[5] if len(inputs) > 5 else return_dict
assert len(inputs) <= 6, "Too many inputs."
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
inputs_embeds = inputs[3] if len(inputs) > 3 else inputs_embeds
output_attentions = inputs[4] if len(inputs) > 4 else output_attentions
output_hidden_states = inputs[5] if len(inputs) > 5 else output_hidden_states
return_dict = inputs[6] if len(inputs) > 6 else return_dict
assert len(inputs) <= 7, "Too many inputs."
elif isinstance(inputs, (dict, BatchEncoding)):
input_ids = inputs.get("input_ids")
attention_mask = inputs.get("attention_mask", attention_mask)
token_type_ids = inputs.get("token_type_ids", token_type_ids)
inputs_embeds = inputs.get("inputs_embeds", inputs_embeds)
output_attentions = inputs.get("output_attentions", output_attentions)
output_hidden_states = inputs.get("output_hidden_states", output_hidden_states)
return_dict = inputs.get("return_dict", return_dict)
assert len(inputs) <= 6, "Too many inputs."
assert len(inputs) <= 7, "Too many inputs."
else:
input_ids = inputs
@ -713,9 +722,13 @@ class TFDPRReader(TFDPRPretrainedReader):
if attention_mask is None:
attention_mask = tf.ones(input_shape, dtype=tf.dtypes.int32)
if token_type_ids is None:
token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32)
return self.span_predictor(
input_ids,
attention_mask,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,

View File

@ -340,6 +340,7 @@ class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
self.assertTrue(layer.split("_")[0] in ["dropout", "classifier"])
@require_tf
class TFBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):

View File

@ -12,8 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import is_tf_available
@ -124,8 +123,6 @@ class TFDPRModelTester:
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
# MODIFY
return_dict=False,
)
config = DPRConfig(projection_dim=self.projection_dim, **config.to_dict())
@ -137,7 +134,7 @@ class TFDPRModelTester:
model = TFDPRContextEncoder(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids, return_dict=True) # MODIFY
result = model(input_ids)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_dpr_question_encoder(
@ -146,14 +143,14 @@ class TFDPRModelTester:
model = TFDPRQuestionEncoder(config=config)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids, return_dict=True) # MODIFY
result = model(input_ids)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size))
def create_and_check_dpr_reader(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDPRReader(config=config)
result = model(input_ids, attention_mask=input_mask, return_dict=True) # MODIFY
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
@ -214,27 +211,61 @@ class TFDPRModelTest(TFModelTesterMixin, unittest.TestCase):
@slow
def test_model_from_pretrained(self):
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRContextEncoder.from_pretrained(model_name, from_pt=True)
model = TFDPRContextEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRContextEncoder.from_pretrained(model_name, from_pt=True)
model = TFDPRContextEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRQuestionEncoder.from_pretrained(model_name, from_pt=True)
model = TFDPRQuestionEncoder.from_pretrained(model_name)
self.assertIsNotNone(model)
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFDPRReader.from_pretrained(model_name, from_pt=True)
model = TFDPRReader.from_pretrained(model_name)
self.assertIsNotNone(model)
@slow
def test_saved_model_with_attentions_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_attentions = True
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
print(model_class)
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
num_out = len(model(class_inputs_dict))
model._saved_model_inputs_spec = None
model._set_save_spec(class_inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
tf.saved_model.save(model, tmpdirname)
model = tf.keras.models.load_model(tmpdirname)
outputs = model(class_inputs_dict)
if self.is_encoder_decoder:
output = outputs["encoder_attentions"] if isinstance(outputs, dict) else outputs[-1]
else:
output = outputs["attentions"] if isinstance(outputs, dict) else outputs[-1]
attentions = [t.numpy() for t in output]
self.assertEqual(len(outputs), num_out)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
@require_tf
class TFDPRModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head(self):
model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", return_dict=False)
model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
input_ids = tf.constant(
[[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]]

View File

@ -249,6 +249,7 @@ class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):
self.assertIsNotNone(model)
@require_tf
class TFElectraModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):