mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
[tests] further fix Tester object has no attribute '_testMethodName'
(#35781)
* bug fix * update with more cases * more entries * Fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
ec7790f0d3
commit
f0ae65c198
@ -36,7 +36,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxAlbertModelTester(unittest.TestCase):
|
||||
class FlaxAlbertModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -80,7 +80,6 @@ class FlaxAlbertModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -35,7 +35,7 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
class AriaImageProcessingTester(unittest.TestCase):
|
||||
class AriaImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -55,7 +55,6 @@ class AriaImageProcessingTester(unittest.TestCase):
|
||||
do_convert_rgb=True,
|
||||
resample=PILImageResampling.BICUBIC,
|
||||
):
|
||||
super().__init__()
|
||||
self.size = size if size is not None else {"longest_edge": max_resolution}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -36,7 +36,7 @@ if is_vision_available():
|
||||
from transformers import BeitImageProcessor
|
||||
|
||||
|
||||
class FlaxBeitModelTester(unittest.TestCase):
|
||||
class FlaxBeitModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -79,7 +79,6 @@ class FlaxBeitModelTester(unittest.TestCase):
|
||||
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
self.seq_length = num_patches + 1
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
|
@ -35,7 +35,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxBertModelTester(unittest.TestCase):
|
||||
class FlaxBertModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -79,7 +79,6 @@ class FlaxBertModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -35,7 +35,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxBigBirdModelTester(unittest.TestCase):
|
||||
class FlaxBigBirdModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -90,7 +90,6 @@ class FlaxBigBirdModelTester(unittest.TestCase):
|
||||
self.use_bias = use_bias
|
||||
self.block_size = block_size
|
||||
self.num_random_blocks = num_random_blocks
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import BlipImageProcessor
|
||||
|
||||
|
||||
class BlipImageProcessingTester(unittest.TestCase):
|
||||
class BlipImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -43,7 +43,6 @@ class BlipImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.26862954, 0.26130258, 0.27577711],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 20, "width": 20}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -31,7 +31,7 @@ if is_vision_available():
|
||||
from transformers import BridgeTowerImageProcessor
|
||||
|
||||
|
||||
class BridgeTowerImageProcessingTester(unittest.TestCase):
|
||||
class BridgeTowerImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class BridgeTowerImageProcessingTester(unittest.TestCase):
|
||||
max_resolution=400,
|
||||
num_channels=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.do_resize = do_resize
|
||||
self.size = size if size is not None else {"shortest_edge": 288}
|
||||
|
@ -32,7 +32,7 @@ if is_vision_available():
|
||||
from transformers import ChameleonImageProcessor
|
||||
|
||||
|
||||
class ChameleonImageProcessingTester(unittest.TestCase):
|
||||
class ChameleonImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class ChameleonImageProcessingTester(unittest.TestCase):
|
||||
image_std=[1.0, 1.0, 1.0],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 18}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import ChineseCLIPImageProcessor
|
||||
|
||||
|
||||
class ChineseCLIPImageProcessingTester(unittest.TestCase):
|
||||
class ChineseCLIPImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -44,7 +44,6 @@ class ChineseCLIPImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.26862954, 0.26130258, 0.27577711],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 224, "width": 224}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import ConvNextImageProcessor
|
||||
|
||||
|
||||
class ConvNextImageProcessingTester(unittest.TestCase):
|
||||
class ConvNextImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -42,7 +42,6 @@ class ConvNextImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 20}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -35,7 +35,7 @@ if is_vision_available():
|
||||
from transformers import DeformableDetrImageProcessor, DeformableDetrImageProcessorFast
|
||||
|
||||
|
||||
class DeformableDetrImageProcessingTester(unittest.TestCase):
|
||||
class DeformableDetrImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -52,7 +52,6 @@ class DeformableDetrImageProcessingTester(unittest.TestCase):
|
||||
rescale_factor=1 / 255,
|
||||
do_pad=True,
|
||||
):
|
||||
super().__init__()
|
||||
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
|
||||
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
|
||||
self.parent = parent
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import DeiTImageProcessor
|
||||
|
||||
|
||||
class DeiTImageProcessingTester(unittest.TestCase):
|
||||
class DeiTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -43,7 +43,6 @@ class DeiTImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 20, "width": 20}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
|
||||
|
@ -37,7 +37,7 @@ if is_vision_available():
|
||||
from transformers import DetrImageProcessorFast
|
||||
|
||||
|
||||
class DetrImageProcessingTester(unittest.TestCase):
|
||||
class DetrImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -54,7 +54,6 @@ class DetrImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
do_pad=True,
|
||||
):
|
||||
super().__init__()
|
||||
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
|
||||
size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
|
||||
self.parent = parent
|
||||
|
@ -35,7 +35,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxDistilBertModelTester(unittest.TestCase):
|
||||
class FlaxDistilBertModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -79,7 +79,6 @@ class FlaxDistilBertModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import DonutImageProcessor
|
||||
|
||||
|
||||
class DonutImageProcessingTester(unittest.TestCase):
|
||||
class DonutImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -51,7 +51,6 @@ class DonutImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -34,7 +34,7 @@ if is_vision_available():
|
||||
from transformers import DPTImageProcessor
|
||||
|
||||
|
||||
class DPTImageProcessingTester(unittest.TestCase):
|
||||
class DPTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class DPTImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
do_reduce_labels=False,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -28,7 +28,7 @@ if is_vision_available():
|
||||
from transformers import EfficientNetImageProcessor
|
||||
|
||||
|
||||
class EfficientNetImageProcessorTester(unittest.TestCase):
|
||||
class EfficientNetImageProcessorTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -43,7 +43,6 @@ class EfficientNetImageProcessorTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -21,7 +21,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxElectraModelTester(unittest.TestCase):
|
||||
class FlaxElectraModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -67,7 +67,6 @@ class FlaxElectraModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -42,7 +42,7 @@ else:
|
||||
FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None
|
||||
|
||||
|
||||
class FlavaImageProcessingTester(unittest.TestCase):
|
||||
class FlavaImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -76,7 +76,6 @@ class FlavaImageProcessingTester(unittest.TestCase):
|
||||
codebook_image_mean=FLAVA_CODEBOOK_MEAN,
|
||||
codebook_image_std=FLAVA_CODEBOOK_STD,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 224, "width": 224}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
||||
codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112}
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import GLPNImageProcessor
|
||||
|
||||
|
||||
class GLPNImageProcessingTester(unittest.TestCase):
|
||||
class GLPNImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -46,7 +46,6 @@ class GLPNImageProcessingTester(unittest.TestCase):
|
||||
size_divisor=32,
|
||||
do_rescale=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -35,7 +35,7 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
class Idefics3ImageProcessingTester(unittest.TestCase):
|
||||
class Idefics3ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -58,7 +58,6 @@ class Idefics3ImageProcessingTester(unittest.TestCase):
|
||||
do_image_splitting=True,
|
||||
resample=PILImageResampling.LANCZOS,
|
||||
):
|
||||
super().__init__()
|
||||
self.size = size if size is not None else {"longest_edge": max_resolution}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -38,7 +38,7 @@ if is_vision_available():
|
||||
from transformers import ImageGPTImageProcessor
|
||||
|
||||
|
||||
class ImageGPTImageProcessingTester(unittest.TestCase):
|
||||
class ImageGPTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -51,7 +51,6 @@ class ImageGPTImageProcessingTester(unittest.TestCase):
|
||||
size=None,
|
||||
do_normalize=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import InstructBlipVideoImageProcessor
|
||||
|
||||
|
||||
class InstructBlipVideoProcessingTester(unittest.TestCase):
|
||||
class InstructBlipVideoProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class InstructBlipVideoProcessingTester(unittest.TestCase):
|
||||
do_convert_rgb=True,
|
||||
frames=4,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -28,7 +28,7 @@ if is_pytesseract_available():
|
||||
from transformers import LayoutLMv2ImageProcessor
|
||||
|
||||
|
||||
class LayoutLMv2ImageProcessingTester(unittest.TestCase):
|
||||
class LayoutLMv2ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -41,7 +41,6 @@ class LayoutLMv2ImageProcessingTester(unittest.TestCase):
|
||||
size=None,
|
||||
apply_ocr=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -28,7 +28,7 @@ if is_pytesseract_available():
|
||||
from transformers import LayoutLMv3ImageProcessor
|
||||
|
||||
|
||||
class LayoutLMv3ImageProcessingTester(unittest.TestCase):
|
||||
class LayoutLMv3ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -41,7 +41,6 @@ class LayoutLMv3ImageProcessingTester(unittest.TestCase):
|
||||
size=None,
|
||||
apply_ocr=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import LevitImageProcessor
|
||||
|
||||
|
||||
class LevitImageProcessingTester(unittest.TestCase):
|
||||
class LevitImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -43,7 +43,6 @@ class LevitImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 18}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -31,7 +31,7 @@ if is_vision_available():
|
||||
from transformers import LlavaImageProcessor
|
||||
|
||||
|
||||
class LlavaImageProcessingTester(unittest.TestCase):
|
||||
class LlavaImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
|
@ -74,7 +74,7 @@ def prepare_mbart_inputs_dict(
|
||||
}
|
||||
|
||||
|
||||
class FlaxMBartModelTester(unittest.TestCase):
|
||||
class FlaxMBartModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -116,7 +116,6 @@ class FlaxMBartModelTester(unittest.TestCase):
|
||||
self.bos_token_id = bos_token_id
|
||||
self.decoder_start_token_id = decoder_start_token_id
|
||||
self.initializer_range = initializer_range
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
|
||||
|
@ -34,7 +34,7 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
class MllamaImageProcessingTester(unittest.TestCase):
|
||||
class MllamaImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -55,7 +55,6 @@ class MllamaImageProcessingTester(unittest.TestCase):
|
||||
do_pad=True,
|
||||
max_image_tiles=4,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 224, "width": 224}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import MobileNetV1ImageProcessor
|
||||
|
||||
|
||||
class MobileNetV1ImageProcessingTester(unittest.TestCase):
|
||||
class MobileNetV1ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -40,7 +40,6 @@ class MobileNetV1ImageProcessingTester(unittest.TestCase):
|
||||
do_center_crop=True,
|
||||
crop_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 20}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import MobileNetV2ImageProcessor
|
||||
|
||||
|
||||
class MobileNetV2ImageProcessingTester(unittest.TestCase):
|
||||
class MobileNetV2ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -40,7 +40,6 @@ class MobileNetV2ImageProcessingTester(unittest.TestCase):
|
||||
do_center_crop=True,
|
||||
crop_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 20}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import MobileViTImageProcessor
|
||||
|
||||
|
||||
class MobileViTImageProcessingTester(unittest.TestCase):
|
||||
class MobileViTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -48,7 +48,6 @@ class MobileViTImageProcessingTester(unittest.TestCase):
|
||||
crop_size=None,
|
||||
do_flip_channel_order=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 20}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -34,7 +34,7 @@ if is_vision_available():
|
||||
from transformers import NougatImageProcessor
|
||||
|
||||
|
||||
class NougatImageProcessingTester(unittest.TestCase):
|
||||
class NougatImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -53,7 +53,6 @@ class NougatImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 20, "width": 20}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -31,7 +31,7 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
class Owlv2ImageProcessingTester(unittest.TestCase):
|
||||
class Owlv2ImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -47,7 +47,6 @@ class Owlv2ImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.26862954, 0.26130258, 0.27577711],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import OwlViTImageProcessor
|
||||
|
||||
|
||||
class OwlViTImageProcessingTester(unittest.TestCase):
|
||||
class OwlViTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -44,7 +44,6 @@ class OwlViTImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.26862954, 0.26130258, 0.27577711],
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -25,7 +25,7 @@ if is_vision_available():
|
||||
from transformers import PoolFormerImageProcessor
|
||||
|
||||
|
||||
class PoolFormerImageProcessingTester(unittest.TestCase):
|
||||
class PoolFormerImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -41,7 +41,6 @@ class PoolFormerImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 30}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 30, "width": 30}
|
||||
self.parent = parent
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import PvtImageProcessor
|
||||
|
||||
|
||||
class PvtImageProcessingTester(unittest.TestCase):
|
||||
class PvtImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -41,7 +41,6 @@ class PvtImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.485, 0.456, 0.406],
|
||||
image_std=[0.229, 0.224, 0.225],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -36,7 +36,7 @@ if is_vision_available():
|
||||
from transformers import AutoImageProcessor
|
||||
|
||||
|
||||
class FlaxRegNetModelTester(unittest.TestCase):
|
||||
class FlaxRegNetModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -65,7 +65,6 @@ class FlaxRegNetModelTester(unittest.TestCase):
|
||||
self.num_labels = num_labels
|
||||
self.scope = scope
|
||||
self.num_stages = len(hidden_sizes)
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
|
@ -35,7 +35,7 @@ if is_vision_available():
|
||||
from transformers import AutoImageProcessor
|
||||
|
||||
|
||||
class FlaxResNetModelTester(unittest.TestCase):
|
||||
class FlaxResNetModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -64,7 +64,6 @@ class FlaxResNetModelTester(unittest.TestCase):
|
||||
self.num_labels = num_labels
|
||||
self.scope = scope
|
||||
self.num_stages = len(hidden_sizes)
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
|
@ -34,7 +34,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxRobertaModelTester(unittest.TestCase):
|
||||
class FlaxRobertaModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -78,7 +78,6 @@ class FlaxRobertaModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -37,7 +37,7 @@ if is_flax_available():
|
||||
|
||||
|
||||
# Copied from tests.models.roberta.test_modeling_flax_roberta.FlaxRobertaModelTester with Roberta->RobertaPreLayerNorm
|
||||
class FlaxRobertaPreLayerNormModelTester(unittest.TestCase):
|
||||
class FlaxRobertaPreLayerNormModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -81,7 +81,6 @@ class FlaxRobertaPreLayerNormModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -35,7 +35,7 @@ if is_flax_available():
|
||||
)
|
||||
|
||||
|
||||
class FlaxRoFormerModelTester(unittest.TestCase):
|
||||
class FlaxRoFormerModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -79,7 +79,6 @@ class FlaxRoFormerModelTester(unittest.TestCase):
|
||||
self.type_sequence_label_size = type_sequence_label_size
|
||||
self.initializer_range = initializer_range
|
||||
self.num_choices = num_choices
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
||||
|
@ -31,7 +31,7 @@ if is_torch_available():
|
||||
import torch
|
||||
|
||||
|
||||
class RTDetrImageProcessingTester(unittest.TestCase):
|
||||
class RTDetrImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -45,7 +45,6 @@ class RTDetrImageProcessingTester(unittest.TestCase):
|
||||
do_pad=False,
|
||||
return_tensors="pt",
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import SiglipImageProcessor
|
||||
|
||||
|
||||
class SiglipImageProcessingTester(unittest.TestCase):
|
||||
class SiglipImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -43,7 +43,6 @@ class SiglipImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -42,7 +42,7 @@ def random_tensor(size):
|
||||
return torch.rand(size)
|
||||
|
||||
|
||||
class SuperGlueImageProcessingTester(unittest.TestCase):
|
||||
class SuperGlueImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
|
@ -34,7 +34,7 @@ if is_vision_available():
|
||||
from transformers.image_transforms import get_image_size
|
||||
|
||||
|
||||
class Swin2SRImageProcessingTester(unittest.TestCase):
|
||||
class Swin2SRImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -48,7 +48,6 @@ class Swin2SRImageProcessingTester(unittest.TestCase):
|
||||
do_pad=True,
|
||||
pad_size=8,
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -26,7 +26,7 @@ if is_vision_available():
|
||||
from transformers import TextNetImageProcessor
|
||||
|
||||
|
||||
class TextNetImageProcessingTester(unittest.TestCase):
|
||||
class TextNetImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
|
@ -35,7 +35,7 @@ if is_vision_available():
|
||||
from transformers import TvpImageProcessor
|
||||
|
||||
|
||||
class TvpImageProcessingTester(unittest.TestCase):
|
||||
class TvpImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -58,7 +58,6 @@ class TvpImageProcessingTester(unittest.TestCase):
|
||||
num_channels=3,
|
||||
num_frames=2,
|
||||
):
|
||||
super().__init__()
|
||||
self.do_resize = do_resize
|
||||
self.size = size
|
||||
self.do_center_crop = do_center_crop
|
||||
|
@ -34,7 +34,7 @@ if is_vision_available():
|
||||
from transformers import VideoLlavaImageProcessor
|
||||
|
||||
|
||||
class VideoLlavaImageProcessingTester(unittest.TestCase):
|
||||
class VideoLlavaImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -52,7 +52,6 @@ class VideoLlavaImageProcessingTester(unittest.TestCase):
|
||||
image_std=OPENAI_CLIP_STD,
|
||||
do_convert_rgb=True,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 20}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import VideoMAEImageProcessor
|
||||
|
||||
|
||||
class VideoMAEImageProcessingTester(unittest.TestCase):
|
||||
class VideoMAEImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class VideoMAEImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
crop_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 18}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
|
||||
|
@ -30,7 +30,7 @@ if is_vision_available():
|
||||
from transformers import ViltImageProcessor
|
||||
|
||||
|
||||
class ViltImageProcessingTester(unittest.TestCase):
|
||||
class ViltImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -46,7 +46,6 @@ class ViltImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 30}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -29,7 +29,7 @@ if is_torchvision_available():
|
||||
from transformers import ViTImageProcessorFast
|
||||
|
||||
|
||||
class ViTImageProcessingTester(unittest.TestCase):
|
||||
class ViTImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -44,7 +44,6 @@ class ViTImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
@ -30,7 +30,7 @@ if is_flax_available():
|
||||
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
|
||||
|
||||
|
||||
class FlaxViTModelTester(unittest.TestCase):
|
||||
class FlaxViTModelTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -72,7 +72,6 @@ class FlaxViTModelTester(unittest.TestCase):
|
||||
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
||||
num_patches = (image_size // patch_size) ** 2
|
||||
self.seq_length = num_patches + 1
|
||||
super().__init__()
|
||||
|
||||
def prepare_config_and_inputs(self):
|
||||
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
||||
|
@ -35,7 +35,7 @@ if is_vision_available():
|
||||
from transformers import VitMatteImageProcessor
|
||||
|
||||
|
||||
class VitMatteImageProcessingTester(unittest.TestCase):
|
||||
class VitMatteImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -52,7 +52,6 @@ class VitMatteImageProcessingTester(unittest.TestCase):
|
||||
image_mean=[0.5, 0.5, 0.5],
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
):
|
||||
super().__init__()
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
|
@ -34,7 +34,7 @@ if is_vision_available():
|
||||
from transformers import VitPoseImageProcessor
|
||||
|
||||
|
||||
class VitPoseImageProcessingTester(unittest.TestCase):
|
||||
class VitPoseImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
|
@ -33,7 +33,7 @@ if is_vision_available():
|
||||
from transformers import VivitImageProcessor
|
||||
|
||||
|
||||
class VivitImageProcessingTester(unittest.TestCase):
|
||||
class VivitImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -50,7 +50,6 @@ class VivitImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
crop_size=None,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"shortest_edge": 18}
|
||||
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
|
||||
|
||||
|
@ -28,7 +28,7 @@ if is_vision_available():
|
||||
from transformers import ZoeDepthImageProcessor
|
||||
|
||||
|
||||
class ZoeDepthImageProcessingTester(unittest.TestCase):
|
||||
class ZoeDepthImageProcessingTester:
|
||||
def __init__(
|
||||
self,
|
||||
parent,
|
||||
@ -46,7 +46,6 @@ class ZoeDepthImageProcessingTester(unittest.TestCase):
|
||||
image_std=[0.5, 0.5, 0.5],
|
||||
do_pad=False,
|
||||
):
|
||||
super().__init__()
|
||||
size = size if size is not None else {"height": 18, "width": 18}
|
||||
self.parent = parent
|
||||
self.batch_size = batch_size
|
||||
|
Loading…
Reference in New Issue
Block a user