Adding support for raw python generator in addition to Dataset for pipelines (#14352)

* Adding support for raw python `generator` in addition to `Dataset`

The main goal is to ease the create of streaming data to the pipe.

`Dataset` is more involved and pytorch specific.

This PR, provides a way to use a python iterator too.
This enabled #14250 but can be proposed as a standalone PR.

```python
from transformers import pipeline

def read_data(filename):
    with open(filename, 'r') as f:
        for line in f:
            yield f

pipe = pipeline("text-classification")
for classified in pipe(read_data("large_file.txt")):
    print("Success ! ", classified)
```

The main caveat of this, is the interaction with `DataLoader` with
`num_workers>1`. When you have multiple workers, each receive a copy
of the generator (like `IterableDataset`). That means the naive Iterator
will fail since all workers iterate on all items of the generator.

There are ways to do clever "skipping", but it could be bad still
because all workers still do have to pass through all items of the
generator (they just ignore items they don't handle), depending on
the case it might be bad.

Using `num_workers=1` is the simplest fix and if the cost of loading
your data is small enough should be good enough. In the above example
trying to do smart tricks to skip some lines is unlikely to be a net
positive for instance.

If there are better ways to do "jumps" on some data, then using
`Dataset` is more advised (since then differents workers can just jump
themselves).

* Adding iterator support for `tf` too.
This commit is contained in:
Nicolas Patry 2021-11-12 09:20:40 +01:00 committed by GitHub
parent 77262ef750
commit ed5d15518b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 70 additions and 10 deletions

View File

@ -12,12 +12,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import csv
import importlib
import json
import os
import pickle
import sys
import types
import warnings
from abc import ABC, abstractmethod
from collections import UserDict
@ -1035,10 +1037,20 @@ class Pipeline(_ScikitCompat):
def get_iterator(
self, inputs, num_workers: int, batch_size: int, preprocess_params, forward_params, postprocess_params
):
if isinstance(inputs, collections.abc.Sized):
dataset = PipelineDataset(inputs, self.preprocess, preprocess_params)
else:
if num_workers > 1:
logger.warning(
"For iterable dataset using num_workers>1 is likely to result"
" in errors since everything is iterable, setting `num_workers=1`"
" to guarantee correctness."
)
num_workers = 1
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
if "TOKENIZERS_PARALLELISM" not in os.environ:
logger.info("Disabling tokenizer parallelism, we're using DataLoader multithreading already")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
dataset = PipelineDataset(inputs, self.preprocess, preprocess_params)
collate_fn = no_collate_fn if batch_size == 1 else pad_collate_fn(self.tokenizer, self.feature_extractor)
dataloader = DataLoader(dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=collate_fn)
model_iterator = PipelineIterator(dataloader, self.forward, forward_params, loader_batch_size=batch_size)
@ -1074,6 +1086,14 @@ class Pipeline(_ScikitCompat):
return self.get_iterator(
inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
)
elif isinstance(inputs, types.GeneratorType):
if self.framework == "pt":
return self.get_iterator(
inputs, num_workers, batch_size, preprocess_params, forward_params, postprocess_params
)
else:
# TODO make the get_iterator work also for `tf` (and `flax`).
return self.iterate(inputs, preprocess_params, forward_params, postprocess_params)
else:
return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)
@ -1085,3 +1105,9 @@ class Pipeline(_ScikitCompat):
model_outputs = self.forward(model_inputs, **forward_params)
outputs = self.postprocess(model_outputs, **postprocess_params)
return outputs
def iterate(self, inputs, preprocess_params, forward_params, postprocess_params):
# This function should become `get_iterator` again, this is a temporary
# easy solution.
for input_ in inputs:
yield self.run_single(input_, preprocess_params, forward_params, postprocess_params)

View File

@ -123,7 +123,12 @@ class TextClassificationPipeline(Pipeline):
If ``self.return_all_scores=True``, one such dictionary is returned per label.
"""
return super().__call__(*args, **kwargs)
result = super().__call__(*args, **kwargs)
if isinstance(args[0], str):
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def preprocess(self, inputs, **tokenizer_kwargs) -> Dict[str, GenericTensor]:
return_tensors = self.framework
@ -160,10 +165,3 @@ class TextClassificationPipeline(Pipeline):
return [{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores)]
else:
return {"label": self.model.config.id2label[scores.argmax().item()], "score": scores.max().item()}
def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params):
return [self.run_single(item, preprocess_params, forward_params, postprocess_params)[0] for item in inputs]
def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
"This pipeline is odd, and return a list when single item is run"
return [super().run_single(inputs, preprocess_params, forward_params, postprocess_params)]

View File

@ -34,7 +34,7 @@ from transformers import (
)
from transformers.pipelines import get_task
from transformers.pipelines.base import _pad
from transformers.testing_utils import is_pipeline_test, require_torch
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch
logger = logging.getLogger(__name__)
@ -286,6 +286,42 @@ class CommonPipelineTest(unittest.TestCase):
# Wrong framework
get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")
@require_torch
def test_iterator_data(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="Narsil/tiny-distilbert-sequence-classification")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
results.append(out)
self.assertEqual(len(results), 10)
# When using multiple workers on streamable data it should still work
# This will force using `num_workers=1` with a warning for now.
results = []
for out in pipe(data(10), num_workers=2):
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
results.append(out)
self.assertEqual(len(results), 10)
@require_tf
def test_iterator_data_tf(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="Narsil/tiny-distilbert-sequence-classification", framework="tf")
out = pipe("This is a test")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_1", "score": 0.502})
results.append(out)
self.assertEqual(len(results), 10)
@is_pipeline_test
class PipelinePadTest(unittest.TestCase):