Fix incorrect comments about atten mask for pytorch backend (#18728)

* fix incorrect comments about atten mask

* typo

* Update for CodeGen

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
Tianqi Zhang (张天启) 2022-09-24 01:52:27 +08:00 committed by GitHub
parent 0cea8d5555
commit ece762443e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 13 additions and 13 deletions

View File

@ -756,7 +756,7 @@ class ModuleUtilsMixin:
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility

View File

@ -466,7 +466,7 @@ class CanineSelfAttention(nn.Module):
attention_mask = torch.unsqueeze(attention_mask, dim=1)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
attention_mask = (1.0 - attention_mask.float()) * torch.finfo(attention_scores.dtype).min
# Apply the attention mask (precomputed for all layers in CanineModel forward() function)
attention_scores = attention_scores + attention_mask

View File

@ -518,11 +518,11 @@ class CodeGenModel(CodeGenPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head

View File

@ -431,7 +431,7 @@ class CTRLModel(CTRLPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -571,7 +571,7 @@ class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -805,7 +805,7 @@ class GPT2Model(GPT2PreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -565,7 +565,7 @@ class GPTNeoModel(GPTNeoPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -484,7 +484,7 @@ class GPTNeoXModel(GPTNeoXPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -606,7 +606,7 @@ class GPTJModel(GPTJPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -757,7 +757,7 @@ class ImageGPTModel(ImageGPTPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility

View File

@ -955,7 +955,7 @@ class LxmertModel(LxmertPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)

View File

@ -475,7 +475,7 @@ class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility