🚨🚨🚨 Replace DataLoader logic for Accelerate in Trainer, remove unneeded tests 🚨🚨🚨 (#24028)

* Working integration

* Fix failing test

* Revert label host logic

* Bring it back!
This commit is contained in:
Zach Mueller 2023-06-12 11:23:37 -04:00 committed by GitHub
parent dc42a9d76f
commit ebd94b0f6f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 60 additions and 278 deletions

View File

@ -61,7 +61,6 @@ from huggingface_hub import Repository, create_repo
from packaging import version
from torch import nn
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from . import __version__
from .configuration_utils import PretrainedConfig
@ -73,7 +72,7 @@ from .modelcard import TrainingSummary
from .modeling_utils import PreTrainedModel, load_sharded_checkpoint, unwrap_model
from .models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, MODEL_MAPPING_NAMES
from .optimization import Adafactor, get_scheduler
from .pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_10, is_torch_less_than_1_11
from .pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_10
from .tokenization_utils_base import PreTrainedTokenizerBase
from .trainer_callback import (
CallbackHandler,
@ -85,14 +84,11 @@ from .trainer_callback import (
TrainerState,
)
from .trainer_pt_utils import (
DistributedLengthGroupedSampler,
DistributedSamplerWithLoop,
DistributedTensorGatherer,
IterableDatasetShard,
LabelSmoother,
LengthGroupedSampler,
SequentialDistributedSampler,
ShardSampler,
distributed_broadcast_scalars,
distributed_concat,
find_batch_size,
@ -102,7 +98,6 @@ from .trainer_pt_utils import (
nested_concat,
nested_detach,
nested_numpify,
nested_truncate,
nested_xla_mesh_reduce,
reissue_pt_warnings,
)
@ -812,20 +807,6 @@ class Trainer:
if self.train_dataset is None or not has_length(self.train_dataset):
return None
generator = None
if self.args.world_size <= 1:
generator = torch.Generator()
# for backwards compatibility, we generate a seed here (which is sampled from a generator seeded with
# `args.seed`) if data_seed isn't provided.
# Further on in this method, we default to `args.seed` instead.
if self.args.data_seed is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
else:
seed = self.args.data_seed
generator.manual_seed(seed)
seed = self.args.data_seed if self.args.data_seed is not None else self.args.seed
# Build the sampler.
if self.args.group_by_length:
if is_datasets_available() and isinstance(self.train_dataset, datasets.Dataset):
@ -837,47 +818,15 @@ class Trainer:
else:
lengths = None
model_input_name = self.tokenizer.model_input_names[0] if self.tokenizer is not None else None
if self.args.world_size <= 1:
return LengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
lengths=lengths,
model_input_name=model_input_name,
generator=generator,
)
else:
return DistributedLengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
lengths=lengths,
model_input_name=model_input_name,
seed=seed,
)
return LengthGroupedSampler(
self.args.train_batch_size * self.args.gradient_accumulation_steps,
dataset=self.train_dataset,
lengths=lengths,
model_input_name=model_input_name,
)
else:
if self.args.world_size <= 1:
return RandomSampler(self.train_dataset, generator=generator)
elif (
self.args.parallel_mode in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
and not self.args.dataloader_drop_last
):
# Use a loop for TPUs when drop_last is False to have all batches have the same size.
return DistributedSamplerWithLoop(
self.train_dataset,
batch_size=self.args.per_device_train_batch_size,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
)
else:
return DistributedSampler(
self.train_dataset,
num_replicas=self.args.world_size,
rank=self.args.process_index,
seed=seed,
)
return RandomSampler(self.train_dataset)
def get_train_dataloader(self) -> DataLoader:
"""
@ -898,36 +847,19 @@ class Trainer:
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
if isinstance(train_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
train_dataset = IterableDatasetShard(
train_dataset,
batch_size=self._train_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
dataloader_params = {
"batch_size": self._train_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
return DataLoader(
train_dataset,
batch_size=self._train_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
dataloader_params["worker_init_fn"] = seed_worker
train_sampler = self._get_train_sampler()
return DataLoader(
train_dataset,
batch_size=self._train_batch_size,
sampler=train_sampler,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
worker_init_fn=seed_worker,
)
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.Sampler]:
# Deprecated code
@ -943,20 +875,13 @@ class Trainer:
rank=smp.dp_rank(),
batch_size=self.args.per_device_eval_batch_size,
)
elif self.args.parallel_mode == ParallelMode.DISTRIBUTED:
return SequentialDistributedSampler(eval_dataset)
else:
return SequentialSampler(eval_dataset)
if self.args.world_size <= 1:
return SequentialSampler(eval_dataset)
else:
return ShardSampler(
eval_dataset,
batch_size=self.args.per_device_eval_batch_size,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return None
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
@ -979,34 +904,18 @@ class Trainer:
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="evaluation")
if isinstance(eval_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
eval_dataset = IterableDatasetShard(
eval_dataset,
batch_size=self.args.per_device_eval_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return DataLoader(
eval_dataset,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
eval_sampler = self._get_eval_sampler(eval_dataset)
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
return DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
return self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params))
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
"""
@ -1026,35 +935,19 @@ class Trainer:
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="test")
if isinstance(test_dataset, torch.utils.data.IterableDataset):
if self.args.world_size > 1:
test_dataset = IterableDatasetShard(
test_dataset,
batch_size=self.args.eval_batch_size,
drop_last=self.args.dataloader_drop_last,
num_processes=self.args.world_size,
process_index=self.args.process_index,
)
return DataLoader(
test_dataset,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
dataloader_params = {
"batch_size": self.args.eval_batch_size,
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
}
test_sampler = self._get_eval_sampler(test_dataset)
if not isinstance(test_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_eval_sampler(test_dataset)
dataloader_params["drop_last"] = self.args.dataloader_drop_last
# We use the same batch_size as for eval.
return DataLoader(
test_dataset,
sampler=test_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
pin_memory=self.args.dataloader_pin_memory,
)
return self.accelerator.prepare(DataLoader(test_dataset, **dataloader_params))
def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
@ -1864,26 +1757,11 @@ class Trainer:
# Skip the first epochs_trained epochs to get the random state of the dataloader at the right point.
if not args.ignore_data_skip:
for epoch in range(epochs_trained):
is_random_sampler = hasattr(train_dataloader, "sampler") and isinstance(
train_dataloader.sampler, RandomSampler
)
if is_torch_less_than_1_11 or not is_random_sampler:
# We just need to begin an iteration to create the randomization of the sampler.
# That was before PyTorch 1.11 however...
for _ in train_dataloader:
break
else:
# Otherwise we need to call the whooooole sampler cause there is some random operation added
# AT THE VERY END!
_ = list(train_dataloader.sampler)
for _ in train_dataloader:
break
total_batched_samples = 0
for epoch in range(epochs_trained, num_train_epochs):
if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
elif hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDatasetShard):
train_dataloader.dataset.set_epoch(epoch)
if is_torch_tpu_available():
parallel_loader = pl.ParallelLoader(train_dataloader, [args.device]).per_device_loader(args.device)
epoch_iterator = parallel_loader
@ -3250,27 +3128,29 @@ class Trainer:
# Update containers on host
if loss is not None:
losses = self._nested_gather(loss.repeat(batch_size))
losses_host = losses if losses_host is None else torch.cat((losses_host, losses), dim=0)
losses = self.accelerator.gather_for_metrics((loss.repeat(batch_size)))
losses_host = losses if losses_host is None else nested_concat(losses_host, losses, padding_index=-100)
if labels is not None:
labels = self._pad_across_processes(labels)
labels = self.accelerator.pad_across_processes(labels)
if inputs_decode is not None:
inputs_decode = self._pad_across_processes(inputs_decode)
inputs_decode = self._nested_gather(inputs_decode)
inputs_decode = self.accelerator.pad_across_processes(inputs_decode)
inputs_decode = self.accelerator.gather_for_metrics((inputs_decode))
inputs_host = (
inputs_decode
if inputs_host is None
else nested_concat(inputs_host, inputs_decode, padding_index=-100)
)
if logits is not None:
logits = self._pad_across_processes(logits)
logits = self.accelerator.pad_across_processes(logits)
if self.preprocess_logits_for_metrics is not None:
logits = self.preprocess_logits_for_metrics(logits, labels)
logits = self._nested_gather(logits)
logits = self.accelerator.gather_for_metrics((logits))
preds_host = logits if preds_host is None else nested_concat(preds_host, logits, padding_index=-100)
if labels is not None:
labels = self._nested_gather(labels)
labels = self.accelerator.gather_for_metrics((labels))
labels_host = labels if labels_host is None else nested_concat(labels_host, labels, padding_index=-100)
self.control = self.callback_handler.on_prediction_step(args, self.state, self.control)
# Gather all tensors and put them back on the CPU if we have done enough accumulation steps.
@ -3303,19 +3183,13 @@ class Trainer:
# Gather all remaining tensors and put them back on the CPU
if losses_host is not None:
losses = nested_numpify(losses_host)
all_losses = losses if all_losses is None else np.concatenate((all_losses, losses), axis=0)
all_losses = nested_numpify(losses_host)
if preds_host is not None:
logits = nested_numpify(preds_host)
all_preds = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
all_preds = nested_numpify(preds_host)
if inputs_host is not None:
inputs_decode = nested_numpify(inputs_host)
all_inputs = (
inputs_decode if all_inputs is None else nested_concat(all_inputs, inputs_decode, padding_index=-100)
)
all_inputs = nested_numpify(inputs_host)
if labels_host is not None:
labels = nested_numpify(labels_host)
all_labels = labels if all_labels is None else nested_concat(all_labels, labels, padding_index=-100)
all_labels = nested_numpify(labels_host)
# Number of samples
if has_length(eval_dataset):
@ -3332,17 +3206,6 @@ class Trainer:
if num_samples == 0 and observed_num_examples > 0:
num_samples = observed_num_examples
# Number of losses has been rounded to a multiple of batch_size and in a distributed training, the number of
# samplers has been rounded to a multiple of batch_size, so we truncate.
if all_losses is not None:
all_losses = all_losses[:num_samples]
if all_preds is not None:
all_preds = nested_truncate(all_preds, num_samples)
if all_labels is not None:
all_labels = nested_truncate(all_labels, num_samples)
if all_inputs is not None:
all_inputs = nested_truncate(all_inputs, num_samples)
# Metrics!
if self.compute_metrics is not None and all_preds is not None and all_labels is not None:
if args.include_inputs_for_metrics:

View File

@ -798,9 +798,9 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
def test_train_and_eval_dataloaders(self):
n_gpu = max(1, torch.cuda.device_count())
trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
# Check drop_last works
trainer = get_regression_trainer(
@ -833,67 +833,6 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
trainer.train()
trainer.evaluate()
def test_sampler_seed(self):
# nb: we don't want to inherit from IterableDataset to hit the right code path
class DummyDataset(torch.utils.data.Dataset):
def __init__(self, length: int = 101):
self.length = length
def __len__(self):
return self.length
def __getitem__(self, i):
if (i < 0) or (i >= self.length):
raise IndexError
return {"input_ids": [i]}
class DummyModel(PreTrainedModel):
def __init__(self, num_params: int):
super().__init__(PretrainedConfig())
# Add some (unused) params. the point here is that randomness in model_init shouldn't influence
# data loader order.
self.params = nn.Parameter(torch.randn(num_params))
def forward(self, input_ids, labels=None):
if labels is not None:
return torch.tensor(0.0, device=input_ids.device), input_ids
else:
return input_ids
def _get_first_data_sample(num_params, seed, data_seed, **kwargs):
with tempfile.TemporaryDirectory() as tmpdir:
trainer = Trainer(
model_init=lambda: DummyModel(num_params),
args=TrainingArguments(
output_dir=tmpdir,
**kwargs,
seed=seed,
data_seed=data_seed,
local_rank=-1,
),
train_dataset=DummyDataset(),
)
return next(iter(trainer.get_train_dataloader()))
# test that the seed is passed to the sampler
# the codepath we want to hit is world_size <= 1, and both group_by_length
for group_by_length in [True, False]:
sample42_1 = _get_first_data_sample(num_params=10, seed=42, data_seed=42, group_by_length=group_by_length)
sample42_2 = _get_first_data_sample(num_params=11, seed=42, data_seed=42, group_by_length=group_by_length)
self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_2["input_ids"]))
# should get same samples with different seed, so long as data_seed is the same
sample42_3 = _get_first_data_sample(num_params=11, seed=11, data_seed=42, group_by_length=group_by_length)
self.assertTrue(torch.equal(sample42_1["input_ids"], sample42_3["input_ids"]))
# make sure we have some randomness in the samples if data_seed is different
others = [
_get_first_data_sample(num_params=i, seed=42, data_seed=i, group_by_length=group_by_length)
for i in range(10)
]
self.assertTrue(any(not torch.equal(sample42_1["input_ids"], sample["input_ids"]) for sample in others))
@require_torch_multi_gpu
def test_data_is_not_parallelized_when_model_is_parallel(self):
model = RegressionModel()
@ -907,9 +846,9 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
self.assertEqual(trainer.args.n_gpu, 1)
# The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)
def test_evaluate(self):
@ -1742,26 +1681,6 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
self.assertIsInstance(loader, torch.utils.data.DataLoader)
self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)
def test_training_finite_iterable_dataset(self):
config = RegressionModelConfig()
model = RegressionPreTrainedModel(config)
batch_size = 1
num_samples = 10
available_steps = num_samples // batch_size
data = FiniteIterableDataset(length=num_samples)
train_args = TrainingArguments(
"..",
max_steps=available_steps + 1, # set a higher number than actually available
per_device_train_batch_size=batch_size,
)
trainer = Trainer(model, train_dataset=data, args=train_args)
with self.assertLogs("transformers.trainer", level="WARNING") as logs:
trainer.train()
self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])
def test_evaluation_iterable_dataset(self):
config = RegressionModelConfig(a=1.5, b=2.5)
model = RegressionPreTrainedModel(config)