[docstring] Fix UniSpeech, UniSpeechSat, Wav2Vec2ForCTC (#26664)

* Remove UniSpeechConfig

* Remove , at the end otherwise check_docstring changes order

* Auto add new docstring

* Update docstring for UniSpeechConfig

* Remove from check_docstrings

* Remove UniSpeechSatConfig and UniSpeechSatForCTC from check_docstrings

* Remove , at the end

* Fix docstring

* Update docstring for Wav2Vec2ForCTC

* Update Wav2Vec2ForCTC docstring

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>

* fix style

---------

Co-authored-by: Yih-Dar <2521628+ydshieh@users.noreply.github.com>
This commit is contained in:
Gizem 2023-10-12 07:51:34 -07:00 committed by GitHub
parent 0ebee8b933
commit eb734e5147
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 54 additions and 27 deletions

View File

@ -65,6 +65,10 @@ class UniSpeechConfig(PretrainedConfig):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`UniSpeechForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
@ -72,26 +76,22 @@ class UniSpeechConfig(PretrainedConfig):
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
@ -118,7 +118,7 @@ class UniSpeechConfig(PretrainedConfig):
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
mask_time_min_masks (`int`, *optional*, defaults to 2):
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
@ -131,7 +131,7 @@ class UniSpeechConfig(PretrainedConfig):
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
mask_feature_min_masks (`int`, *optional*, defaults to 0):
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
@ -141,8 +141,6 @@ class UniSpeechConfig(PretrainedConfig):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
@ -163,6 +161,15 @@ class UniSpeechConfig(PretrainedConfig):
instance of [`UniSpeechForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
num_ctc_classes (`int`, *optional*, defaults to 80):
Specifies the number of classes (phoneme tokens and blank token) for phoneme-level CTC loss. Only relevant
when using an instance of [`UniSpeechForPreTraining`].
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
replace_prob (`float`, *optional*, defaults to 0.5):
Propability that transformer feature is replaced by quantized feature for pretraining.

View File

@ -1374,6 +1374,12 @@ class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
@add_start_docstrings(
"""UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
UNISPEECH_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng'
by default.
""",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH
class UniSpeechForCTC(UniSpeechPreTrainedModel):

View File

@ -66,6 +66,10 @@ class UniSpeechSatConfig(PretrainedConfig):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`UniSpeechSatForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
@ -73,26 +77,22 @@ class UniSpeechSatConfig(PretrainedConfig):
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_extract_activation (`str, `optional`, defaults to `"gelu"`):
feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for quantized feature encoder states.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`):
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
@ -119,7 +119,7 @@ class UniSpeechSatConfig(PretrainedConfig):
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
mask_time_min_masks (`int`, *optional*, defaults to 2):
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
@ -132,7 +132,7 @@ class UniSpeechSatConfig(PretrainedConfig):
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
mask_feature_min_masks (`int`, *optional*, defaults to 0):
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
@ -142,8 +142,6 @@ class UniSpeechSatConfig(PretrainedConfig):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
@ -175,6 +173,15 @@ class UniSpeechSatConfig(PretrainedConfig):
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*.
xvector_output_dim (`int`, *optional*, defaults to 512):
Dimensionality of the *XVector* embedding vectors.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
num_clusters (`int`, *optional*, defaults to 504):
Number of clusters for weak labeling. Only relevant when using an instance of
[`UniSpeechSatForPreTraining`].
Example:

View File

@ -1381,6 +1381,12 @@ class UniSpeechSatForPreTraining(UniSpeechSatPreTrainedModel):
@add_start_docstrings(
"""UniSpeechSat Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
UNISPEECH_SAT_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechSatForCTC`] with adapters. Uses
'eng' by default.
""",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeechSat, wav2vec2->unispeech_sat, WAV_2_VEC_2->UNISPEECH_SAT
class UniSpeechSatForCTC(UniSpeechSatPreTrainedModel):

View File

@ -1871,6 +1871,12 @@ class Wav2Vec2ForMaskedLM(Wav2Vec2PreTrainedModel):
@add_start_docstrings(
"""Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
WAV_2_VEC_2_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`Wav2Vec2ForCTC`] with adapters. Uses 'eng' by
default.
""",
)
class Wav2Vec2ForCTC(Wav2Vec2PreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):

View File

@ -760,10 +760,6 @@ OBJECTS_TO_IGNORE = [
"TranslationPipeline",
"TvltImageProcessor",
"UMT5Config",
"UniSpeechConfig",
"UniSpeechForCTC",
"UniSpeechSatConfig",
"UniSpeechSatForCTC",
"UperNetConfig",
"UperNetForSemanticSegmentation",
"ViTHybridImageProcessor",
@ -787,7 +783,6 @@ OBJECTS_TO_IGNORE = [
"Wav2Vec2ConformerConfig",
"Wav2Vec2ConformerForCTC",
"Wav2Vec2FeatureExtractor",
"Wav2Vec2ForCTC",
"Wav2Vec2PhonemeCTCTokenizer",
"WavLMConfig",
"WavLMForCTC",