[s2s] support early stopping based on loss, rather than rouge (#6927)

This commit is contained in:
Sam Shleifer 2020-09-03 17:31:35 -04:00 committed by GitHub
parent 207ed8cb78
commit e95d262f25
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 38 additions and 21 deletions

View File

@ -75,21 +75,23 @@ class Seq2SeqLoggingCallback(pl.Callback):
return self._write_logs(trainer, pl_module, "test")
def get_checkpoint_callback(output_dir, metric, save_top_k=1):
def get_checkpoint_callback(output_dir, metric, save_top_k=1, lower_is_better=False):
"""Saves the best model by validation ROUGE2 score."""
if metric == "rouge2":
exp = "{val_avg_rouge2:.4f}-{step_count}"
elif metric == "bleu":
exp = "{val_avg_bleu:.4f}-{step_count}"
elif metric == "loss":
exp = "{val_avg_loss:.4f}-{step_count}"
else:
raise NotImplementedError(
f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this function."
f"seq2seq callbacks only support rouge2, bleu and loss, got {metric}, You can make your own by adding to this function."
)
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(output_dir, exp),
monitor=f"val_{metric}",
mode="max",
mode="min" if "loss" in metric else "max",
save_top_k=save_top_k,
period=0, # maybe save a checkpoint every time val is run, not just end of epoch.
)
@ -98,8 +100,8 @@ def get_checkpoint_callback(output_dir, metric, save_top_k=1):
def get_early_stopping_callback(metric, patience):
return EarlyStopping(
monitor=f"val_{metric}",
mode="max",
monitor=f"val_{metric}", # does this need avg?
mode="min" if "loss" in metric else "max",
patience=patience,
verbose=True,
)

View File

@ -148,10 +148,10 @@ class SummarizationModule(BaseTransformer):
lm_logits = outputs[0]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
assert lm_logits.shape[-1] == self.model.config.vocab_size
loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
else:
lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
loss, nll_loss = label_smoothed_nll_loss(
@ -178,15 +178,25 @@ class SummarizationModule(BaseTransformer):
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
rouges = {k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]}
rouge_tensor: torch.FloatTensor = torch.tensor(rouges[self.val_metric]).type_as(loss)
rouges.update({k: v.item() for k, v in losses.items()})
losses.update(rouges)
metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
metrics["step_count"] = self.step_count
self.save_metrics(metrics, prefix) # writes to self.metrics_save_path
generative_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metric_val = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(generative_metrics)
all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
all_metrics["step_count"] = self.step_count
self.save_metrics(all_metrics, prefix) # writes to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": rouge_tensor}
return {
"log": all_metrics,
"preds": preds,
f"{prefix}_loss": loss,
f"{prefix}_{self.val_metric}": metric_tensor,
}
def save_metrics(self, latest_metrics, type_path) -> None:
self.metrics[type_path].append(latest_metrics)
@ -306,7 +316,9 @@ class SummarizationModule(BaseTransformer):
parser.add_argument("--src_lang", type=str, default="", required=False)
parser.add_argument("--tgt_lang", type=str, default="", required=False)
parser.add_argument("--eval_beams", type=int, default=None, required=False)
parser.add_argument("--val_metric", type=str, default=None, required=False)
parser.add_argument(
"--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
)
parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
parser.add_argument(
"--early_stopping_patience",
@ -366,14 +378,17 @@ def main(args, model=None) -> SummarizationModule:
es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
else:
es_callback = False
lower_is_better = args.val_metric == "loss"
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric, args.save_top_k),
checkpoint_callback=get_checkpoint_callback(
args.output_dir, model.val_metric, args.save_top_k, lower_is_better
),
early_stopping_callback=es_callback,
logger=logger,
# TODO: early stopping callback seems messed up
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:

View File

@ -33,7 +33,7 @@ CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
"label_smoothing": 0.2,
"eval_beams": 1,
"val_metric": None,
"val_metric": "loss",
"save_top_k": 1,
"adafactor": True,
"early_stopping_patience": 2,
@ -262,9 +262,9 @@ class TestSummarizationDistiller(unittest.TestCase):
if not check_contents:
return model
contents = os.listdir(output_dir)
ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt" # "val_avg_rouge2=0.0000-epoch=1.ckpt" # "epoch=1-val_avg_rouge2=0.0000.ckpt"
contents = {os.path.basename(p) for p in contents}
self.assertIn(ckpt_name, contents)
ckpt_files = [p for p in contents if p.endswith("ckpt")]
assert len(ckpt_files) > 0
self.assertIn("test_generations.txt", contents)
self.assertIn("test_results.txt", contents)